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1. INTRODUCTION
The main purpose of this paper is to prove the existence of an embedding ED.a of the space of

Schwartz distributions D’(ft) into the algebra of asymptotic functions PE(f) which preserves all linear

operations in :/Y (f). Thus, we offer a solution ofthe problem ofmultiplication of Schwartz distributions

since the multiplication within/Y(f) is impossible (L. Schwartz [1]).
The algebra PE(f) is defined in the paper as a factor space of nonstandard smooth functions

The field of the scalars ’C of the algebra "E(ft), coincides with the complex counterpart of

A. Robinson’s asymptotic numbers--known also as "Robinson’s field with valuation" (see A Robinson

[2]) and A. H. Lightstone and A. Robinson [3]). The embedding ED,n is constructed in the form

SD,n Q o D* II.* where (in backward order): is the extension mapping (in the sense of

nonstandard analysis), is the Schwartz multiplication in /Y(f) (more precisely, its nonstandard

extension in */Y(f)), * is the convolution operator (more precisely, its nonstandard extension), o

denotes "composition," Qn is the quotient mapping (in the definition of the algebra of asymptotic

functions) and D and II are fixed nonstandard internal functions with special properties whose existence

is proved in this paper.
Our interest in the algebra (fZ) and the embedding/Y(fZ) C ’l/(f), is due to their role in the

problem of multiplication of Schwartz distributions, the nonlinear theory of generalized functions and its

applications to partial differential equations 0V[. Oberguggenberger [4]), (T. Todorov [5] and [6]). In
particular, there is a strong similarity between the algebra of asymptotic functions Pl/(f) and its

generalized scalars ’C, discussed in this paper, and the algebra of generalized functions (f) and their
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generalized scalars C, introduced by J. F. Colombeau in the framework of standard analysis

(J. F. Colombeau [7], pp. 63, 138 and J. F. Colombeau [8], 8.3, pp. 161-166). We should mention that

the involvement of nonstandard analysis has resulted in some improvements of the corresponding

standard coumerparts; one of them is that ’C is an algebraically closed field while its standard

coumerpart C in J. F. Colombeau’s theory is a ring with zero divisors.

This paper is a generalization of some results in [9] and [10] (by the authors of this paper,

respectively) where only the embedding of the tempered distributions ,S’(Rd) in P(Rd) has been

established. The embedding of all distributions :/Y(f), discussed in this paper, presents an essentially

different situation. We should mention that the algebra P(Rd) was recently studied by R. F. Hoskins and

J. Sousa Pinto 11].
Here [2 denotes an open set of Rd (d is a natural number), E(f) C(f/) and D(f) C(f)

denote the usual classes of C-functions on [2 and C-functions with compact support in [2 and 2Y ([2),
and E’(f) denote the classes of Schwartz distributions on f and Schwartz distributions with compact

support in f, respectively. As usual, N, R, R+ and C will be the systems of the natural, real, positive
real and complex numbers, respectively, and we use also the notation N0 {0} U N. For the partial
derivatives we write 0, c (/N. Ifc (cq, Cd) for some c Nod, then we write Icl Cl+...+Cd
and ifx (xl Xd) for some x Rd, then we write x x’x.....d d For a general reference
to ,distribution theory we refer to H. Bremermann [12] and V. Vladimirov [13].

Our framework is a nonstandard model of the complex numbers C, with degree of saturation larger
than card(N). We denote by *R, *R+, "C, "(f) and *7)(f) the nonstandard extensions of R, JR+, C,
(f) and 7)(f), respectively. IfX is a set of complex numbers or a set of (standard) functions, then *X

will be its nonstandard extension and if f" X Y is a (standard) mapping, then "f" "X --, *Y will be

its nonstandard extension. For integration in *Rd we use the .-Lebesgue integral. We shall often use the

same notation, [Ix[I, for the Euclidean norm in Rd and its nonstandard extension in *Rd. For a short

introduction to nonstandard analysis we refer to the Appendix in T. Todorov [6]. For a more detailed

exposition we recommend T. Lindstrom [14], where the reader will find many references to the subject.

2. TEST FUNCTIONS AND THEIR MOMENTS
In this section we study some properties of the test functions in 7)(Rd) (in a standard setting) which

we shall use subsequently.
Following (I.F. Colombeau [7], p. 55), for any k N we define the set oftest functions:

{p (Rd) p is real-valued, o(x) 0 for [[x]] _> 1;A

Obviously, A1 D A2 As D Also, we have Ak - for all k E N O.F. Colombeau [7], Lemma

(3.3.1), p. 55).
In addition to the above we have the following result:
LEMMA 2.2. For any k E N

inf (,l,p(x)ldx) =1. (2.2)
oA

More precisely, for any positive real//there exists o in Ak such that

1 _< f I,(m)ldm _< 1 + .
Ja

In addition, o can be chosen symmetric.
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PROOF. We consider the one dimensional case d 1 first. Start with some fixed positive (real
valued) in T)(R) such that (z) 0 for Ixl

_
1 and f, (z)dx 1 ( can be also chosen symmetric

if needed). We shall look for in the form:

3=0

x E R, e E R+. We have to find c: for which o Ak. Observing that

for O, 1, k, we derive the system for linear equations for %
k

j=O

1, k.

The system is cenainly satisfied, if

k

%d 1,
=o
k

c(+): O, 1, k,

which can be written in the matrix form V+I(e)C 13, where V+l(e) is Vandermonde (k+l) (k+l)
matrix, C is the column ofthe unknowns % and B is the column whose top entry is and all others are 0.

For the determinant we have det V+I (e) 0 for e : 1, therefore, the system has a unique solution

(c], Cl, c2, ck). Our next goal is to show that this solution is ofthe form:

e,(+e())
c: 4-

e(l+eP(e)) (2.3)

where P and P are polynomials and

k-1 k-1

%

_
q(k+l-q)+ (k+l-m)

q=l m=j

(2.4)

for 0 < j < k, and

k-I, k+Eq(k+l-q).
q=l

The coefficients co, c, ck will be found by Cramer’s rule. The formula for Vandermonde determinants

gives

for some polynomial P, where
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To calculate the numerator in (2.3), we have to replace the jth column of the matrix by the column B

(whose top entry is and all others are 0) and calculate the resulting determinant D. Consider first the

case I < j _< k 1. By developing with respect to the jth column, we get

We factor out 2, 4, 2(,-1), 20+1), {2k and obtain:

/) -l- 61"2 62"2... (3-1)-2 (j+l)-2... 62k
1, 1, 1, 1,

x det
1, , 2, 0-),

1, k-, 2(k-), (j-1)(-),

0+1),

0+1)(-)

Thlatter is a Vandermonde determinant again, and we have

Dj -Jr- f1.2+2.2+...+(j-1)2+(j+l)2+...k-2

x (- 1)(2- 1)(- 1)...(j-I- 1)(’+]- 1)...(k- 1)
( )( )...(- )(e+ 0... ( )

(j-1 -2)(j+l j-2)... (k j-2)
(+1 -)...( -)

Hence, factoring out (i-1)(=,) in the ith row above, we get D: -t-,(1 +P()) for some

polynomials Pj(e) and

= . +. 2 +... + (j- ). + (j+ ). 2 +... + k. 2

+ 1. (k 2) + 2(k 3) + + (j- 1)(k j)
+ (j + 1)(k j 1) + + (k 1). 1
1. k -+- 2(k 1) + + (j 1)(k j + 2) .-+- (j / 1)(k j + 1) + + (k 1). 3 + k. 2
j-1 k-1 k-1 k-1

q=l m=3 q=l

which coincides with the desired result (2.4) for aj, in the case 1

_
j

_
k 1. For the extreme cases

j 0 and j k, we obtain

k-1 k-1 k-1

ao E (m q- l)(k-b I m) q(k q- 1 q) +E (k + 1 rnl
m---O q=l m=O

k-1

k E q(k q- l q)
q=l

which both can be incorporated in the formula (2.4) for j. Finally, Cramer’s rule gives the expression

(2.3) for cj.

Now, taking into account that > 0, by assumption, and the fact that II+P(e)l > Ii-lP(e)ll
1 IP()I > 0 for all sufficiently small epsilon, we obtain
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3=0 .r-o

and this latter expression can be made smaller than 1 + 5 for sufficiently small e if a) j + aj -/ > 0 for

0 < < k 1, and b) k + a -/5 O. Now, b) is obvious, as for a), we have:

-t 1
j + oj , j +Z (k + l m) k - (k j)(k j / l)

m-j

for 0 < j < k 1. To generalize the result for arbitrary dimension d, it suffices to consider a product of

functions ofone real variable. The proofis complete.

3. NONSTANDARD DELTA FtTNCTIONS
We prove the existence of a nonstandard function D in "g)(Rd) with special properties. The proof is

based on the result of Lemma 2.2 and the Saturation Principle (T. Todorov [6], p. 687). We also

consider a type of nonstandard cut-off-functions which have close coumerparts in standard analysis. The

applications ofthese functions are left for the next sections.

LEMMA 3.1 (Nonstandard Mollifiers). For any positive infinitesimal p in "R there exists a

nonstandard function 0 in "I)(Rd) with values in "R, which is symmetric and which satisfies the following

properties:

(i) O(x)----0 for x E "Rd, ll=ll-> 1;

() . O(:)d ;
(iii) f. O(x)xdx 0 for all a E No, a - O;
(iv) f. le(=)ld= , 1;

I ;1-1{ 0 for
\zE.R

where is the infinitesimal relation in *C. We shall call this type offunction nonstandard p-molli.fiers.

PROOF. For any k N, we define the set oftest functions:

]k { e V(Rd) is real-valued and symmetric,

() 0 for I111 >- , ]
1}

and the internal subsets of*(Rd)

{ ( )Ak o e "(’)" llnpl-I sup l(’o(=))l < for II <
z-R

Obviously, we have 1 D A--2 D 3 D and A1 D Jr2 D A3 D Also we have } for all

k E N, by Lemma 2.2. On the other hand, we have k C .A in the sense that o E implies *o
since

sup le(’(x))l sup I()1 suplOo(x)l
zE’R zRd z_<l

!
is a real (standard) number and, hence, [In pl-l| sup [8(’p(x))l} is infinitesimal. Thus, we have

\z*R

for 1 k N. By the Satiation Pple (T. Todorov [6], p. 687), the inton
keN

is non-emp md us, y 0 Ase desired properties.
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DEFINITION 3.2 (p-Delta Function). Let p be a positive infinitesimal. A nonstandard function D
in "Z)(Rd) is called a p-deltafunction if it takes values in "R, it is symmetric and it satisfies the following

properties:

(i) D(z)-O for x’Rd, [[z[[>_p,
(ii) f.a D(z)dz 1,

(iii) f.a D(z)zdz 0 for all a Ng, a :/: O,
(iv) j’.a ID()ldz ,
(v) Ilnpl-(pd+l’l sup

TItEOREM 3.3 (Existence). For any positive infinitesimal p in *R there exists a p-delta function.

PROOF. Let 0 be a nonstandard p-mollifier of the type described in Lemma 3.1. Then the

nonstandard function D in *(Rd), defined by

D(,x) p-dO(x/p), x . *Rd, (3.1)

satisfies (i)-(v).
REMARK. The existence of nonstandard functions D in *(Rd) with the above properties is in

sharp contrast with the situation in standard analysis where there is no D in Z(Rd) which satisfies both

(ii) and (iii). Indeed, ifwe assume that D is in (Rd), then (iii) implies (") (0) 0, for all n 1, 2,
here/ denotes the Fourier transform of D. It follows (0) c for some constant c since/ is

an entire function on Ca, by the Paley-Wiener Theorem (H. Bremermann 12], Theorem 8.28, p. 97). On

the other hand, D (Rd) c ,.q(Rd) implies lRd ,S(Rd) since ,S(Rd) is closed under Fourier

transform. Thus, it follows c 0, i.e. D 0 which implies D 0 contradicting (ii).
For other classes of nonstandard delta functions we refer to (A. Robinson [15], p. 133) and to

(T. Todorov 16]).
Our next task is to show the existence ofan internal cut-off.function.
NOTATIONS. Let f be an open set ofRd.
1) For any R+ we define

{m d" Ilmll _< } and f {m -d(m, 0) _> },

where Ilzll is the Euclidean norm in Rd, Cf is the boundary of f and d(x, 0f) is the Euclidean distance

between x and 0f. We also denote:

D(f) {o (f) suppo C_ B}, l/(f) {T ’(f) suppT _c f}.

2) We shall use the same notation, *, for the convolution operator

(V. Vladimirov [13]) and its nonstandard extension * *lY(Rd) x */(Rd) - *(Rd) as well as for the

convolution operator * l/’(f) x (f) D(ft), defined for all sufficiently small R+, and for its

nonstandard extension: * E(f) x *,(f) *(f), *R+, 0.

3) Let - be the usual Euclidean topology on Rd. We denote by the set of the nearstandard

points in f, i.e.

where #(x), x Rd, is the system of monads ofthe topological space (,d, "r’) (T. Todorov [6], p. 687).
Recall that if f, then if and only if is a finite point whose standard part belongs to f.

LEMMA 3.4. For any positive infinitesimal p in *R there exists a function II in *(f) (a p-cut-off

functwn) such that:

a) rl(x) I for all x

b) supp H C_ *f,, where *f, { /*f *d(,0fl) _> p}.
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PROOF. Let p be a positive infinitesimal in *R and D be a p-delta function Define the imemal set

X { E *fl" "[[[I -< l/p, *d(, Off) >_ 2p} and let X be its characteristic function. Then the function

1-I X * D has the desired property. !-I

4. THE ALGEBRA OF ASYMPTOTIC FUNCTIONS
We define and study the algebra P(f) of asymptotic functions on an open set fl of Rd. The

construction of the algebra P(fl), presemed here, is a generalization and a refinement of the

constructions in [9] and [10] (by the authors of this paper, respectively), where the algebra P(Rd) was

introduced by somewhat different but equivalent definitions. On the other hand, the algebra of

asymptotic functions P(f) is somewhat similar to but different from the J. F. Colombeau [7], [8]
algebras of new generalized functions. This essential difference between P(f) and J. F. Colombeau’s

algebras of generalized functions is the properties of the generalized scalars: the scalars of the algebra

PE(fl) constitutes an algebraically closed field (as any scalars should do) while the scalars of J. F.
Colombeau’s algebras are rings with zero divisors (J. F. Colombeau [$], 2.1). This improvement

compared with J. F. Colombeau’s theory is due to the involvement ofthe nonstandard analysis.
Let f be an open set ofRd and p E *R b a positive infinitesimal. We shall keep and p fixed in

what follows.

Following A. Robinson [2], we define:

DEFINITION 4.1 (Robinson’s Asymptotic Numbers). The field of the complex Robinson p-

asymptotic numbers is defined as the factor space PC CM/C0, where

CM { "c" Il < p- for some n

co { "c" Il < f for all n

("M" stands for "moderate’). We define the embedding C C PC by c q(c), where q" C PC is

the quotient mapping. The field ofthe real asymptotic numbers is defined by PR q(*R CM).
It is easy to check that Co is a maximal ideal in C and hence PC is a field. Also PR is a real closed

totally ordered nonarchimedean field (since *R is a real closed totally ordered field) containing R as a

totally ordered subfield. Thus, it follows that PC PR(i) is an algebraically closed field, where

V/-.
The algebra of "asymptotic functions" is, in a sense, a C-counterpart of A. Robinson’s asymptotic

numbers

DEFINITION 4.2 (Asymptotic Functions on f). (i) We define the class PE(f) ofthe p-asymptotic

functions on fl (or simply, m3ptotic functions on fl if no confusion bould arise) as the factor space

P(f)=M(f)/0(f), where

M(fl) {f *E(f)’f() E CM, for all a E Nod and all },
(a) {/ "z(n) y/()} Co, for 0 and

and is the set of the nearstandard points of *f (3.2). The fimctions in u(f) are called p-moderate

(or, simply, moderate) and those in E0(f) are called p-nullfunctions (or, simply, null.functions).
(ii) The pairing between PE(f) and D(f) with values in PC, is defined by

(Q(f),o) q(/n f(x)

where q" CM PC and Qa u(f) -- P(fl) are the corresponding quotient mappings, o is in (f)
and *o is its nonstandard extension.

(iii) We define the canonical embedding (f) C P(f) by the mapping f Q(’f), where *f
is the nonstandard extension off.
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EXAMPLE 4.3. Let D be a nonstandard podelta function in the sense of Definition 3.2. Then

D E ]M(R). In addition, D{* E EM(), where D{* denotes the pointwise restriction ofD on *.

To show this, denote [lnp[ -1 (p+ll sup [OD(x)[) h and observe that ho 0 for all
\ /

by the definition of D. Thus, for any (finite) x in *Rd and any c /% we have 10D(x)l <_
sup [OD(x)l lnpl+ol < P-’, for n d + la[+ 1, thus, D E E(R). On the other hand,

xE-ll

D "f2 E([2) follows immediately from the fact that consists offinite points in "JR only.
TBEOREM 4.4 (Differential Algebra). (i) The class of asymptotic functions PE(f) is a differential

algebra over the field ofthe complex asymptotic numbers

(ii) E(f2) is a differential subalgebra of PE(E2) over the scalars C under the canonical embedding

an. In addition, a preserves the pairing in the sense that (f, o) (cry(f), o) for all f in (f2) and for

all o in D(E2), where <f, o) f f(x)(x)dx is the usual pairing between E(fl) and

PROOF. (i) It is clear that E(fl) is a differential ring and go(E2) is a differential ideal in

since C is a ring and Co is an ideal in C and, on the other hand, both EM(E2) and 0(E2) are closed

under differential, by definition. Hence, the factor space PE([2) is also a differential ring. It is clear that,

E(f) is a module over the ring C and, in addition, the annihilator {c C cf Eo(E2), f
of C coincides with the ideal Co. Thus, PE(f) becomes an algebra over the field of the complex

asymptotic numbers

(ii) Assume that a(*f)= 0 in PE(E2), i.e. *f 0(f2). By the definition of E0(fl) (applied for

a 0 and n 1), it follows f 0 since *f is an extension of f and p is an infinitesimal. Thus, the

mapping f a(f) is injective. It preserves the algebraic operations since the mapping f--
preserves them. The preserving of the pairing follows immediately from the fact that f,n*f(x)dx
f f(x)dx, by the Transfer Principle (T. Todorov [6], p. 686). The proof is complete, l-I

5. EMBEDDING OF SCIIWARTZ DISTRIBUTIONS
Let A be (as before) an open set err. Recall that the Schwartz embedding La ,o()

fromo(f) into/Y/fl) is defined by the formula:

(Lt(f),) ff(x)(x)dx, o E 79(f). (5.1)

Here o([2) denotes, as usual, the space of the locally (Lebesgue) integrable complex valued functions

on fl (V. Vladimirov 13]). The Schwartz embedding La preserves the addition and multiplication by a

complex number, hence, the space toc(f) can be considered as a linear subspae of77(fl). In addition,

the restriction Lfl E([2) of Lfl on E([2) (often denoted also by Lr) preserves the partial differentiation of

any order and in this sense (fl) is a differential linear subspace of 7)’ ([2). In short, we have the chain of

linear embeddings: ;toc(f) C (fl) C
The purpose of this section is to show that the algebra of asymptotic functions PE([2) contains an

isomorphic copy of the space of Schwartz distributions/Y (f) and, hence, to offer a solution of the

Problem ofMultiplication ofSchwartz Distributions. This result is a generalization ofsome results in [9]
and [10] (by the authors of this paper, respectively) where only the embedding of the tempered
distributions ,S’(Ra) in PE(Ra) has been established. The embedding of all distributions D’(I2), discussed

here, presents an essentially different situation.

The spaces [2) and )(fl), defined below, are immediate generalizations of the spaces Ra) and

(R), introduced in (K. D. Stroyan and W. A. Luxemburg [17], (10.4), p. 299):

fl) {o *(I2) tTp(x) is a finite number in *C for all

z and a a rg}, (.2)
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() { *E(f) c(x) is a te number in "C for

x , N d (x) 0 for 1 x "}, (5.3)

Obously, we ve () C) C (). Notice weft that () implies *(G) for

some open relatively compact set G of. We have so the follong sple result

LE5.1. If T () d 6 E0() (), then (’T,)
PROOF. Obsee at E0(fl)(fl) plies () *D(G) for some open relatively

mpa set G of D. By the continui ofT (d Trsfer Pnciple) there est coasters M e + d
m o such at

[(*T,)[ M sup ["(x)[.

On the oth hd, M sup [@"(x)[ < p" for m 6 N, nce 6 (fl), by asspfion. Thus,

t D a p-delta nion in en of Defiifion 3.2. We shl kp D (ong fl d p)

fixed in what fofiows.

DEON 5.2 (Embeng of Sctz Dsmibutio). We dee e em$ng

(fl) C ’(fl) by D.n T Qn((*Tn) * D), where *T is the nonstdd eeion ofT, n is

a ( imly cho) t-offnon for fl 3.4), "Tn is the Schwz produm been

"T d n M *(fl) (de by Trsfer Pciple), * is e nvolution operator d

Qn () aE(fl) ise quotient mapping in the defiition of(fl) etion 4.2).
e t-off non n be drop in the ave detio i.e. D,n T Qn(*T* D), in

somepilcs; e.g. when:

a) Ts a compact mpm r;
b) n=md.
PROPOSON 5.3 (Coeess). T 6 (fl) implies (*Tn) * D ().
PROOF. Choose N d 1 x . Swe have ((n *T) * D)(x) ((*T) D)(x)

y the defion of ), we nd to show that (*T*D)(x)CM oy, i.e. that

](*T* D)(x)] < p- for some m ( ght depend on ). We st th e case 0

Denote D() D(- x), *R d obeset supp(D=) *G for me open relatively mpact

G of r, sce D vshes on *fi. Ne, by the ntui ofT (d the Trsfer Principle), there

est cots odM R+ chat

Finely, ere es such at p ](x- )[ < p-, since [*G is a p-moderate

ion xple 4.3). Combg the ts, we ve: [(*T*
r&r. The generfion forimd follows ediately sin (’T*D)=
((*T)) * D *(T) * D, by TrfPciple, aT is() in (fl).
FROPOSON $.4. f ) plies (fH)*D- f 0().
PROOF. Let x d N. Sin we have

[(f D)(x) f(x)] y the defion of n), we n to ow tt [(f * D)(x) f(x)] C0
0y. Choose . Wen to owt [[(f * D)(x) f(x)][ < p. Wes first

0. By Taylor’s foula (appli by fe0, we ve
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for any , where () is a point in *fl "btwn x and ." Notice that the point r/() is also in It
follows

(f * D)(x) f(x) D()[f(x ) f(x)]d (n + 1)’
D()Of(())d’

since fHll<_p D()ad O, by the definition ofD. Thus, we have

I(f* D)(z) f(z)l < (n + 1)!
ID(z)ldz sup 10af(0())l < f,

as desired, since, on one hand, f.a ID(x)ldz " 1, by the definition of D and on the other hand, the

above sum is a finite number because .#af(()) are all finite due to r/() . The generalization for
an arbitrary a is immediate since 0[(f * D)(z) f(x)] (Of * D)(x) Of(x), by the Transfer

Principle.
COROLLARY 5.5. (i) f (12) implies (’fl-l) * D *f E 0(12).
(ii) D(12)implies (’IIa)* D-*o E0(f) [’)(I2).
PROOF. (i) follows immediately from the above proposition since f /(f) implies *f
(ii) Both (’o IIu)* D and *o vanish on *fl\ since their supports are within an open relatively

compact neighborhood G ofsupp(o) and the latter is a compact set of f/, by assumption. Thus,

(* II) * D *o *D(G) C (f), as required.

Denote/(z) D( z) and recall that/3 D since D is symmetric (Definition 3.2).
PROPOSmON 5.6. IfT 77(12) and o E 79(12), then

((*TIIn) * D)(z) "p(x)dx <T, o> e Co.

PROOF. Using the properties ofthe convolution operator (applied by transfer), we have

((’Tn)
D)(z)’o(z)dz >

((’Tn) * D,’,) (’r,’V) (’7"n,’,. z)) (’7"n,’v)
(’Trlr,’v.D -’v)= (’T,’v.D-’v) Co,

by Lemma 5.1 since *o * D "9 o(12) (fl), by Corollary 5.5.

We are ready to state our main result:
THEOREM 5.7 (Properties of o,n). (i) o,n preserves the pairing in the sense that for all T in

77(12) and all o in 79(12) we have (T, o) (Et,n(T), o), where the left hand side is the (usual) pairing
oft and p in 1Y(12), while the fight hand side is the pairing of9,(T) and o in ’E(f/) (Definition 4.2).

(ii) Zz, is injective and it preservers all linear operations in 27 (f/): the addition, multiplication by

(standard) complex numbers and the partial differentiation ofany (standard) order.

(iii) o, is an extension of the canonical embedding an defined earlier in Definition 4.2 in the

sense that tra= Zo,u o La, where L is the Schwartz embedding (5.1) restricted on/(12) and o

denotes composition. Or, equivalently, the following diagram is commutative:
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(f) o.f (5.4)

PROOF. (i) Denote (as before) b(x) D(- x) and recall that b(x) D (Definition 3.2). We
have

(Zo.((T), (p) (Qu((’TIIu) * D), (p) (T,

q(L((II "T)* D)(x) "(p(x)dx) q((T,

qCL ((’TII,) * D)(x) "(p(x)dx <T, v)) =0,

because f.f((’TYI) D)(z) "V(z)dz (T, V) (F.. C0, by Proposition 5.6. Here (T, V) q((T,
holds because (T, V) is a standard (complex) number.

(ii) The injectivity of ED, follows from (i): ED,n(T) 0 in PE(f) implies (ED.(T),) 0 for
all E (f2), which is equivalent to (T,)= 0 for all E D(f2), by (i), thus, T 0 in ’(f2), as

required. The preserving ofthe linear operations follows from the fact that both the extension mapping
and the convolution * (applied by Transfer Principle) are linear operators.

(iii) For any f E E(f) we have a(f) Q(*f) Q((*fYI) D) Qu((’L(f)I-I). D)
ED.u(L(f)), as required, since *f (*fl’If) * D 0(f2), by Corollary 5.5. I-I

REMARK S.8 (Multiplication of Distributions). As a consequence of the above result, the

Schwartz distributions in lY(f) can be multiplied within the associative and commutative differential

algebra PE(f) (something impossible in D’(f2) itself). By the property (iii) above, the multiplication in

PE(f2) coincides on E(f2) with the usual (pointwise) multiplication in E(f2). Thus, the class
endowed with an embedding Ez.u, presents a solution of the problem of multiplication of Schwartz
dstributons which, in a sense, is optimal, in view ofthe Schwartz impossibility results (L. Schwartz ])
(for a discussion we refer also to J. F. Colombeau [7], 2.4 and M. Oberguggenberg [18], 2). We
should mention that the existence of an embedding of D’(Ra) into P(Ra) can be proved also by sheaf-
theoretical arguments as indicated in (M Oberguggenberger [18], 23).

REMARK S.9 (Nonstandard Asymptotic Analysis). We sometimes refer to the area connected

directly or indirectly with the fields PR as Nonstwutard Asymptotic Ana!yss. The fields PR were

introduced by A. Robinson [2] and are sometimes known as "Robinson’s nonarehimedean valuation

fields." The terminology "Robinson’s asymptotic numbers," chosen in this paper, is due to the role of

for the asymptotic expansions of classical functions (A. H. Lightstone and A. Robinson [3]) and also to

stress the fact that in our approach PC plays the role of the scalars of the algebra PI(D.). Linear spaces
over the field PR has been studied by W. A. J. Luxemburg [19] in order to establish a connection between

nonstandard and nonarehimedean analysis. More recently PR has been used by V. Pestov [20] for

studying Banach spaces. The field PR has been exploited by Li Bang-He [21] for multiplication of

Schwartz distributions.
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