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ABSTRACT. This paper deals with analysis on homogeneous cones in JR". This subject has its origins in

one-dimensional topics that are connected, often implicitely, with some group properties. The homogeneous
cones are open convex cones in ]Rn that ar at the same time homogeneous spaces, and they are more general
than the classical, or symmetric cones. As an example of application of the theory of homogeneous cones we

study the asymptotic behaviour of some integral transforms.
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1. INTRODUCTION
The purpose of this paper is to find an n-dimensional analogue of the classical Abelian Theorem for

the Laplace Transform (see Widder [1])
Iff(t) ,’ , --o, then .’f(t) ,’ F(a+l ), --.>oo.

(Herefis a positive function defined on 1+ (0,oo), the parameter z > 0 and the Laplace transform is taken

in the form _Lf(t)= e-Ultf(u)dulu.)
This theorem relies mainly on the group properties of (F-,+,,) (the multiplicative group of positive

reals). Indeed, the functions are the automorphisms of this group, dulu is the invariant measure and
the kernel e-u/t is a homogeneous function (of two variables).

As n-dimensional counterparts of the half-line 17,+ we shall take homogeneous cones. These are
cones in Rn endowed with a group operation (see Definition 2.1 below). The theory of homogeneous cones
was founded by Koecher [2], Rothaus [3], Vinberg [4] and Gindikin [5].

Homogeneous cones that are also self-dual are called symmetric cones. They were studied much
more than the general homogenous cones; their theory is presented in a book by Faraut and Koranyi [6].

In this paper we shall try to see how many of the results that hold for symmetric cones can be
transferred to general homogeneous cones (and the latter class is considerably larger). This is based on
Vinberg’s theory of homogeneous cones, in which the elements of the cone are given in the form of
"generalized matrices"; then everything becomes similar not only to symmetric cones, but to classical cones
whose elements are positive definite matrices.

Vinberg’s study is based on some nonassociative algebras, which are now called Vinberg algebras.
The corresponding algebras for the symmetric cones are the Jordan algebras (see, for example, Faraut and
Koranyi [6]). The symmetric cones were fully classified: there are 5 types of them. There are infinitely
many types of general homogeneous cones, but their exact classification is not yet known.



644 T. OSTROGORSKI

In sections 2 and 3 we review some properties of the homogeneous cones following mostly Vinberg
[4]. As an example of an application of this theory to analysis we study integral transforms and their

asymptotic behaviour. Analysis on homogeneous cones was developed, and to a much larger extent, by
Gindikin [5]. We shall eventually reprove some of his results in the framework of Vinberg’s theory. In this

form these results look more similar to the ones for classical cones. In section 4 we consider the power
functions which are the n-dimensional functions t-.-} ta; they also give the invariant measure and take part
in the definition of homogeneous kernels. In sections 5 and 6 we deal with a class of integral transforms with

homogeneous kernels and prove a theorem of Abelian type. Examples of these integral operators are the

Laplace transform, the Riemann-Liouville operator and the Stieltjes transform.

2. THE CONE, THE GROUP, THE LIE ALGEBRA AND THE VINBERG ALGEBRA
In this section we review some notions we shall need from the theory of homogeneous cones. In

particular, we shall see how the group of automorphisms of the cone and its Lie algebra determine a Vinberg
algebra in the ambient space

DEFINITION 2.1. Let V be an open convex cone in n, which doesn’t contain any straight line.

The cone V is said to be homogeneous if there is a group G of linear automorphisms (a subgroup of GL(n,])
which leaves V invariant) which is transitive on V; i.e., such that for every u,ve V there is an element g of G
such that v gu.

A most important property of homogeneous cones is that they always have a simply transitive group
of automorphisms, i.e. a group G such that for every u,v V there is a unique g G such that v gu. In other

words, there is a bijection 1"I: G V which, if we fix an element c V once for all, assigns to every v V a

unique gv G such that v gv c. Thus the group operation induces an operation for the elements of the cone

v u gvguC. (2.1)
We shall call this simply transitive group G the group of the cone. This group is triangular (real

solvable) and if is the Lie algebra of G, then the exponential mapping is a bijection from the Lie algebra
onto G. By taking the derivative of the mapping 1"I above, we see that the mapping n: IRn defined by
X Xc is a vector space isomorphism. Thus we have bijective mappings between the four sets: V, G, and
IRn. In particular, if for x An we write L(x) for the unique element of such that x L(x)c, we can define

the following operation

xy L(x)y L(x)L(y)c. (2.2)
This bilinear operation introduces into IR n the structure of a Vinberg algebra. This is the nonassoeiative

algebra described in the next definition.

Equation (2.2) gives an action of the Lie algebra on n. Also, by the bijectivity the exponential
mapping, every gG is of the form g expL(x), with some L(x) and the corresponding action of the Lie

group G is given by

gy expL(x)y. (2.3)
The orbit of the point c is the cone V.

DEFINITION 2.2. A Vinberg algebra 15 (lRn,
such that

(B) xa0,z) (xay)z y(xz) (yx)z
(B. 1) the operator of left multiplication L(x): 15 - 15, L(x)y xay has all the eigenvalues real,
(B.2) Tr L(xax) > 0, for every xe I5.

The Vinberg algebra has an identity c if moreover

(B.3) xac cr x.

A Vinberg algebra 15 with identity c has a Pierce decomposition. First of all, there is a complete
system of orthogonal idempotents Cl C,n, with cl+...+c,n c; the number m is called the rank of 15. Then
15 is decomposed into a direct sum of subspaces

15 i<j 15ij, i,j ,m (2.4)
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where ’Sii IRci and the subspace Eij is characterized by the fact that the operators L(ci) and L(cj) have the

eigenvalue 1/2 on it, and the operator R(cj) has the eigenvalue 1; all the other L(ct) and R(ck) are zero on

Eij. The subspaces Sij have dimensions nij.

We shall write xij for an element of Bij, and in particular, xii xici, with xi ]R. Thus by (2.4), every
xe is of the form

x ixij i xici + -i<j xij. (2.5)

Then for L(x) we have an analogous decomposition

L(x) -’i xiL(ci) + i<j L(xij). (2.6)

Consider the Lie algebra 9, which, as every triangular Lie algebra, is decomposed into the sum 9
+ % of the abelian subalgebra and the niipotent subalgebra ’ll, [9,]. The operators L(ci) constitute a

basis of the they commute since ci are orthogonal idempotents; this can be easily seen if we note that

in terms of the operators of left multiplication condition (B) takes the form [L(x), L(y)] L(xay yax). The

elements L(xij) belong to the nilpotent subaigebra ’II,. The trace of L(x) equals

TrL(x) xiTrL(ci)= , xidi (2.7)
i=i i=i

where we have put di TrL(ci) (since TrL(xij) 0). By the remark above about the eigenvalues of L(ci) it

follows that

di + v/2 + [ti/2 with vi [ot<i n, ti ’l>i ni (2.8)

for rn. We shall write d (dl dm), v (Vl Vm) and I.t (lXl lSm) for these three multi-indices,

which are characteristic for the cone. We shall need them in sections 5, 7 and 8 and the values of these

indices for different examples of cones are given in section 9.

In a Vinberg algebra we can introduce an inner product by

(x ly) TrL(xay). (2.9)
Condition (B2) shows that this bilinear form is positive definite. In particular, by (2.7) we see that for the

identity c we have

(c x) ,xiai. (2.0)
i=1

3. THE MATRIX CALCULUS
In this section we write an element x of a Vinberg algebra, given as in (2.5), in the form of a

symmetric "matrix" in the following way. We write the real numbers xi as diagonal entries and the nij-
dimensional elements xij ij in the ij and ji position. We thus define a mapping m: 5 -- % from into

the space of generalized symmetric matrices . The matrix product for two such matrices is defined by
making use of the operation (2.2) (see Vinberg [4] for details). It is a nonassociative operation.

Let be the subspace of upper triangular matrices in . IfA %, let , e W be the "upper trangular
half’ ofA, i.e. a matrix , such that A =/] + ,r, where r is the transposition in this matrix algebra. For A,
Be put

A B= A B + Bt]r. (3.1)
THEOREM 3.1. (Vinberg [4]). The space % with the operation (3.1) is a Vinberg algebra and the mapping
m: -- % is an isomorphism of Vinberg algebras, i.e. m(x y) re(x) re(y).

Isomorphic Vinberg algebras have equal inner products (2.9). Thus for the algebras and % we
have (x ly) (re(x)Ira(y)) and in particular, since m(c) I, the identity matrix, we deduce from (2.10)

m

(IIA) aiid (3.2)
i=1

where A re(x) and aii (= xi) are the diagonal elements of the matrix A.
Now, consider the triangular subalgebra 7. It turns out that the restriction of the matrix product to

is associative. Then the commutator [X, Y] XY- YX makes into a Lie algebra, which is isomorphic with. This isomorphism is given by the mapping V: L(x) X which writes the element L(x) from (2.6) in the
form of an upper triangular matrix by putting 1/2xi in the diagonal position and xij in the ij position, for <j.
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(The factor 1/2 is introduced into the diagonal entries so that for A m(x) and X (L(x)) we have A X +
xr.) Formula (3.1) actually defines the action of the Lie algebra 9" on %: ifXe 9" and Be % the mapping

p(X): B XB + BX (3.3)

acts on % and by Theorem 3.1 it is isomorphic with the action of the element L(x) of the Lie algebra
defined in (2.2).

Now let T expg" be the Lie group with Lie algebra 9". It is easily seen, by standard arguments, that

the exponential mapping is given by expX I + X + X212! + X3/3! + where X2 XX, etc. is the matrix

product. Then it follows that T is the subset of 9" consisting of matrices with positive diagonal elements.
The groups T and G are isomorphic and the isomorphism P is the exponential of, i.e.

F: g expL(x) expl/(L(x)). (3.4)

The exponential of the action p(X) of (3.3) gives the following representation P of T in

P(t): B -* t(Btr) (3.5)
which is isomorphic to the action of g expL0c) in (2.3).

LEMMA 3.1. Let te T be the image by F of g expL(x). Then the diagonal elements of are equal

to tii ex/2.
Indeed, we are looking for the i-th diagonal element of expw(L(x)). Since is a triangular matrix,

which is equal to the exponential of a triangular matrix X w(L(x)), we have that tii is equal to the

exponential of the i-th diagonal element of X, which is equal to x//2.
The orbit by T of the point I re(c) is a cone W, isomorphic to V. Indeed, it is readilly seen that W

re(V). Thus every we Wis in P(T)L in other words, there is a te T such that

w ttr. (3.6)
Equation (3.6) is called the Gauss decomposition of the symmetric matrix w. Matrices having a

Gauss decomposition will be also called "positive definite" (because the diagonal elements of are positive).
Thus W is the cone of positive definite matrices in %. This is analogous to the case of the symmetric cones

consisting of positive definite elements of the corresponding Jordan algebra. Note how here the Gauss
decomposition ttr is obtained immediately, whereas in Jordan algebras it requires some work (see Faraut and

Koranyi [6]).
Let us close this section with a formula in which an instance of the matrix product is computed and

which we shall need in section 7. For an upper triangular matrix whose matrix components are tij the

diagonal components of the product ttr are equal to
m

j=i+l

where It/j[]2 (tijltij) (see Vinberg [4]). And now by <3.2) we have

(I ttr) t + - (3.7)
i--1 i<j

4. THE POWER FUNCTIONS
The power functions are generalizations of the function x xa in one variable. They are in fact the

group characters. For the classical cones the power functions are the principal minors of the matrix. This is

generalized to any homogeneous cone, the main tool being the Gauss decomposition; if in w ttr we take the

entries of the matrix as coordinates for w, then the power function has a particularly simple form it is a

product of diagonal coordinates (see (4.5) below).
Note first that the mapping I’I: G ---> V gives a bijeetion between the functions F: V ---> IR+ and f: G --->

IR+ in the following way

F(v) f(gv) or fig) F(gc). (4.1)
DEFINITION 4.1. A function : V --> IR+ is called a power function if the function : G --> IR+

defined in (4.1) is a group character.

It follows that

(gv) lff,g)(v) and dp(v.v’) dO(v) qp(v’) (4.2)
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for every g G and v,v’ V (where. is defined as in (2.1)). It is easy to determine the exact form of all power

functions.

LEMMA 4.1. Let be a power function and let g G be written as g expL(x), with L(x) as in (2.6).

Then there exist real numbers i such that

(g) eqX,+--.+,x,. (4.3)

If o (1 or,n) is a multi-index, we shall write a for the power function in (4.3) and Oa for the

power function related to o as in (4.2). Denote by i and I the elementary power functions

Oi(g) eX’, i(v) ex, (4.4)

Thus every a is equal to a , ...amm"
Now let T be the triangular matrix group from section 3, isomorphic with G. We shall write 6afor

the power function on T and iiia for the corresponding power function on the cone W m(V). Then we have

for W(g) as in (3.4) ....,,- (4.5)

Ov) ilia(re(v)) (4.6)
Indeed, it is obvious that isomorphic groups have equal characters. Now by Lemma 3.1 we have tii eX/2,
and the second equality in (4.5) follows by (4.3).

An important example of a power function is the norm N: V -- IR+ defined as

N(gv) Detg N(v). (4.7)

(see Koecher [2]). Since for g expL(x) we have Detg eTrL(x) e’’di by (2.7), we see that

Detg ld(g), N(v) d(v) (4.8)

with d the multi-index defined in (2.8).

As another example, take the multi-index 11 (1 and put

A(v) ll(v), 5(g) ll(g) exm+...+x,, (4.9)

and call this function the deltafunction of the cone.

REMARK 4.1. By applying (4.5) we see that when v is an ordinary matrix (written as v ttr), then

the delta function A(v) is the ordinary determinant of v. Indeed, A(v) l(t) (t l...tmm)2 according to (4.5)

and this equals (det 02 dew. When in (4.8) the multi-index d is a constant di d, and this is the case only
for symmetric cones, we obtain a formula N(v) (A(v))d, well-known in Jordan algebras (see Faraut and

Koranyi [6]); in the theory of Jordan algebras A(v) equals detv, the determinant of an element in the Jordan

algebra. We write capital letters when Det and Tr are the determinant and the trace of a linear operator (in
(4.8) g is identified with the linear operator, as in (2.3)).

5. AN INTEGRAL FORMULA
In section 6 we shall deal with integral transforms of functions defined on V. The formula in

Theorem 5.1 below will be used to compute some integrals. The Gauss decomposition (3.6) provides a good
change of variables in an integral containing a power function, since the Jacobian for this change of variables
is also a power function. We shall apply this formula in section 7 to compute the gamma function of the
cone. For the classical cones this formula can be found in Garding [7]. It was generalized to the symmetric
cones in Faraut and Koranyi [6]. Gindikin [5] has evaluated the integral for the gamma function by a
different parametrization.

First consider the invariant measure on V. Here a measure dm is called invariant if it is invariant
under the action of G: dm(gv) din(v), for every g G, v V. Then by (4.8) we find easily the following
lemma.

LEMMA 5.1. The invariant measure on V is equal to din(v) dv/N(v).
Here N is the norm of V and, for v written as in (2.5), dv dvl...dvmdvl2...dv,n.lm is the Lebesgue

measure on IRn, where dvij is the nij-dimensional Lebesgue measure on the space IRnij ij.
We shall take the cone in its W form (and write again ot in the place of ilia). The change of variables

in the following theorem is given by I’I !: T--o Wwith

w= Ill(t) ttr. (5.1)
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Recall that the multi-indices d, v and Ix were defined in (2.8).
THEOREM 5.1. Let F: W-+ IR+ be integrable with respect to the invariant measure din. Then

Iw F(w)dm(w) 2mIT F(ttr-’(t)dt

where , is the multi-index , 1/2 + IX/2.
PROOF. By Lemma 5.1 the invariant measure is given by the power function -d(w) -d(t). Thus

we only have to show that the Jacobian of (5.1) is equal to 2mdpd-l(t). This is done in the following three

lemmas.

LEMMA 5.2. Letlt: T -- Tbe the left translation in the group: It(s) ts and let Ill be as in (5.1).
Then

Ill It P(t) 1-I 1. (5.2)
PROOF. Since Ill(t) ttr P(t)l (by (3.5)) we have for the left-hand side of (5.2) Ill It(s)

1-11(ts) P(ts)l and for the fight-hand side of (5.2) we have P(t)* Ill(s) P(t)P(s)l. Since P(t) is a group
action, the lemma follows.

LEMMA 5.3. Let Ill(t) ttr. Then Det dill(t) 2’n DetP(t_______).
Detl

PROOF. Take the derivative of (5.2) at I
dill(t) dlt(1)=dP(t)(I) dl-Ii(/). (5.3)

Since P(t) and It are linear transformations, they are equal to their derivatives. Now dill(/): ’" -- % is

given by X - X +Xr, and thus Det dlIi(/) 2m. By taking the deteminates of (5.3) the lemma follows.
LEMMA 5.4. If It is the left translation in T, then Dt It tV(t).
PROOF. Since It Itl we have that .(t) Det It is indeed a power function. Thus we only have to

determine the exponent ),. By Lemma 4.1 a power function depends only on the abelian part. This means
that if a is the abelian part of t T, then k(t) ,(a). Thus to compute .(a) consider la T T. By Lemma
3.1 the elements of the diagonal matrix a are d2 so that la multiplies the i-th row ofs Tby a factor ex/2.
Then in the Jacobian we have this factor ?i times, where ?i is the sum of the dimensions in the i-th row, and
this is equal to + ti (see (2.8)).

Now to finish the proof of the theorem, we have to substitute in Lemma 5.3 the values of Det/t ’(t)
and DetP(t). Since P(t) (3.5) is an action isomorphic with (2.3), we have Det P(t) Detg and this equals
t(g) t(t). Finally the Jacobian is equal to 2-’t(t). This proves the theorem.

6. INTEGRAL TRANSFORMS WTI’H HOMOGENEOUS KERNELS
Let vRn be a homogeneous cone and let F: V -- lq.+. We shall consider operators of the form

o:T(v) vk(V,u)F(u)dm(u) (6.1)

where k: V V-+ 1;I+ is a given function, the kernel of and dm is the invariant measure. The kernel is
said to be homogeneous oforder T if

k(gv, gu) #:’t(g) k(v, u) (6.2)
for every gG and v,u V, where ’ is the power function. It is easily seen that if ."has a homogeneous
kernel, it transforms power functions into power functions.

LEMMA 6.1. Let an operator with homogeneous kernel of order ?. If the integral

rx Jvk(c,u)da(u)dm(u) (6.3)

is convergent, then the integral defining ..Xe’v) is convergent for every v Vand

.v) :a t(v). (6.4)
PROOF. Equation (6.2) can be written as k(v,u) (v(C,gv-lu). Now by putting this into the

definition of ..eF(v) and changing the variable y gv’lu we obtain

.’F(v) t(v) Ivk(c, y)F(v y)dm(y). (6.5)

Finally put F Dot in this formula and use (4.2).
Postponing until the next section the computation of r, for some examples of operators (6.1), we are

now going to prove that if a function F is asymptotically equivalent to a power function, then its integral
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transform is asymptotically equivalent to a power function. To define limits we consider translation

invariant filters.

DEFINITION 6.1. A filter ’ of open convex subsets of V is called translation invariant if it has a

countable basis and if, for every y V, we have that S ’implies S.y .
We shall write v-->, for the convergence with respect to this filter. Thus we have that v-->, implies

v.y-->=o, for everyy V.
Two functions F, G: V --> -,+ are said to be equivalent at infinity with respect to , if lim F(v)/G(v)

1. This will be denoted by F ,x, G.
REMARK 6.1. A different kind of asymptotic relations for functions defined on cones in IRn were

considered in Vladimirov et al. [8] and Yakymiv [9]. The notion of limit in Definition 6.1 is more general (it

is taken after Bajsanski and Karamata [10]). Indeed, by the identification (4.1), it is equivalent to consider a
filter of subsets in G and then, for example, lim F(v. y) is the same as lim F(gy). In our notation, the

convergence in Vladimirov et al. [8] becomes convergence with respect to one parameter subgroups g(t)
(with t-->,) in G. The asymptotic in Yakymiv [9] is even more special, with g(t) the group of dilations.

(Compare also with Stadtmiiller [11], where g(t) is an arbitrary curve, but only in the cone lRn+.) Both in

Vladimirov et al. [8] and Yakymiv [9] the cone is only supposed to be (the closure of) an open, convex cone,

and it has less structure than a homogeneous cone.

THEOREM 6.1. Let .,r’be an integral operator with homogeneous kernel of order ?. Let F: V -->

IR+ be such thatF- is bounded. Then

F ,x, tl implies ,x, ctl+’
for those t for which the integral r c)is convergent.

We shall first consider the case when t 0. Then F(v) ---> 1, v --> . Since we are only interested in

the asymptotic behaviour, we may modify the functions so that they become bounded on the complements of
the elements of the filter basis (without changing its behaviour at o). Together with F(v) --> 1, this

modification yields that F is bounded everywhere.
PROPOSITION 6.1. Let be an integral operator with homogeneous kernel of order [ and such

that :0 < ". Let F: V--+ R+ be bounded. Then F(v) --> 1, when v --> implies

to0. (6.6)

(Here gO is defined in (6.3), with 0 .)

PROOF. By applying (6.5) we have that (6.6) is equivalent to the fact that the following expression
tends to zero

q-l(v)..rF(v) to0 [.,k(c,y)(F(v y)- 1)din(y). (6.7)

Now for > 0 take a (large) compact set D c_ V such that

v_Dk(C,y)dm(y) < (6.8)

which is possible by the assumption c0 < oo, and write the integral in (6.7) as

To estimate ;l, note that, by the translation invariancc of the filter, v --> implies v.y--> oo, for every

y, so that F(v. y) tends to l, when v --> oo, and in fact uniformly in yD. Thus we can find an Se .9’ so that

for v$ we have

[11 < .ok(c,y)dm(y) < .;Vk(c, y)dm(y)

For 12, since F is bounded (by C, say), we have

12 < (C+I) g_Dk(C,y)dm(y) < (C+1)

by (6.8). This proves the proposition.
PROOF OF THEOREM 6.1. Put FI(y) F(y)-’y) and kl(c,y) qa(y)k(c,y). Then we have

..fffFI (v) .,ff"F(v) and we are going to apply Proposition 6.1 to the operator .,fir. By the assumptions of the

theorem, F1--> and is bounded, so that it satisfies the conditions of the proposition. The kernel kl is

homogeneous of order + ? and satisfies the conditions of the proposition, since the constant r,0 for
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this operator equals ..’O0(c) ."OC(c) ga and is finite. Now an application of the propostion gives
.,ffi’F1 ,x, rO13 and since [3 + y, we finally find ..Z,’F .,i’F1 rq+, which proves the theorem.

7. THE LAPLACE TRANSFORM
In this and the following two sections we consider some examples of the operators (6.1). They are n-

dimensional analogues of some classical operators and were considered by Gindikin [5]. Here we shall apply
Vinberg’s theory of homogeneous cones to compute the integrals as in (6.3).

To define the Laplace transform, consider first the norm N like in (4.7) and the inner product defined

in (2.9), and for v Vlet v* Rn be such that for everyy 1n we have (v*ly) dlogN(v)y. (See Koecher [2]
or Rothaus [3]; actually v* belongs to the dual cone of V.) The mapping * has the property

((gv)*l gu) (v*lu) (7.1)
for every gG and v,u V.

The Laplace transform is defined by

.’F(v) Jv e’*u)F(u)dm(u).

Here the kernel is k(v,u) e-(V*lu), and by (7.1) this is a homogeneous kernel of order 0. In order to apply
Theorem 6. to this operator we need to know the integral

"Z’dhCt(c) Jv e’(c lu)diX(u)dm(u) FV(o:)

vhich is called the "gamma function of the cone" (see Koecher [2] or Gindildn [5]).
PROPOSITION 7.1. Let a be a multi-index such that o > l.t/2. Then the integral def’ming Fv(ot) is

convergent.

PROOF. First since W m(V), we have Fv(c) w e’(! tw)(w)dm(w)" where now a is the

power function of W, which was denoted before by ilia (see (4.6)), dm is the invariant measure on Wand the

inner products on two isomorphic cones are exlual. Now in this integral we put w ttr (see (5.1)). By
Theorem 5. we have

FIAt) 2m[r e’(llttr)O?ct(t)O-(t)dt. (7.2)

Now we substitute (3.7) and (4.5) into the integral (7.2) and put/5i oi- ’i. Then we have

rv(a) Ie-zait-Yzi<’lt’l tl....t, at (7.3)

This integral is a product of one-dimensional integrals of two types. The first type

Ii e"y-’ditiiz ti2iS’ dtii 2d8i,1+,,2
is convergent since ii + 1/2 cgi- Yi + 1/2 0ti- 1/2 Bil2 + 1/2 ti I.ti/2 > 0, by the assumption.

The second type of integrals in (7.3) is

IO" [ e’I/2(t)dt
where t/ are the coordinates of tij in some basis in ij. By a well-known formula, IO. (2t)I/2. This proves

the proposition.
Now an application of Theorem 6. gives the following.
THEOREM 7.1. (Abelian Theorem for the Laplace Transform). Let ot > 0/2. Let F: V -- IR+ be

such thatF-t is bounded. Then

F ,x, Oa implies .Z’F Fv(a) o.

8. THE RIEMMAN-LIOUVILLE OPERATOR AND THE STIELTJF TRANSFORM
In this section we define two more operators. Again we shall have to prove that the integrals (6.3) for

these operators are convergent. But now there is no need to evaluate these integrals again, since they are

generalizations of the beta function and can be obtained by reducing to the gamma functions, by formulas
completely analogous to the classical ones. This was done in Gindikin [5]; for completeness we reproduce
briefly these formulas.
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The cone V defines a partial order in IRn in the following way: v < u iff u ve V. Write (a,b) for the
"interval" with respect to this order, i.e. for the set of all elements v V such that a < v < b.

Let [ be a multi-index, then the Riemann-Liouville operator is defined by

F(v)= J(O,v) [(v-u)F(u)dm(u)

where the kernel k(v,u) %(o,v)(u)p[(v-u) is homogeneous of order [. Here : is the characteristic function;
and since g G preserves the cone, it also preserves the order: u < v implies gu < gv.

LEMMA 8.1. Let c >2 and 3’> p/2. Then the integral is convergent

(0,c) :(u)P’r-d(c-u)dm(u) Bv(fx,3’).

This is easily sen if we consider the double integral defining I’v()Fv(3’), which by Proposition 7.1 is

convergent for x > IX/2 and 3’> la/2. By changing the order of integration this integral is equal to

rl/(x)rv(3") IV e-(c Iv) I(0,v) Pu)OY-d(v-u)dm(u)dv

and by Fubinrs theorem the inner integral is convergent for every v V and for and 3’ as above.

THEOREM 8.1. (Abelian Theorem for the Riemann-Liouville Operator). Let [ > -1 v/2 and let
for c > la/2 the function F: V IR+ be such thatF- is bounded. Then

F ,’,., I implies . F Bv(ot,[+d) Oo+l.
Let p be a multi-index. Then the Stieltjes transform is defined by

F(v) v -P(v+u)F(u)dm(u)

and its kernel k(v,u) -P(v+u) is homogeneous of order -p.
LEMMA 8.2. Let p > IX and /2 < x < p IH2. Then the following integral is convergent

v O-P(c+u)O(u)dm(u).

This is sen by introducing the change of variables u c + y, and after that the change x u"1 gu-lc
(the Jacobian is equal to Det(g-2) -2d(g), se Gindikin [5]). Then we obtain Bv(p-o,c).

THEOREM 8.2. (Abelian Theorem for the Stieltjes Transform). Let p > Ix and let for IH2 < x < p
p/2 and let the function F: V -+ IR+ be such thatF-c is bounded. Then

F ,’ c implies .p F ,’,., Bv(p-c,c)I--P.

9. EXAMPLES OF CONES
In this section we consider some examples of homogeneous cones. By Vinberg’s matrix calculus we

find the explicit form of the power function in much the same way as for the cones of ordinary matrices in
example 1) below. We also write down the exact values of the constants Ixi, v and di appearing in the

formulation of the Abelian Theorems.

1) The Classical Cones. Let IRn m(F) be the space of symmetric mm matrices with coefficients in F
R, C or I-I. Let V be the cone of positive definite matrices m(F). Here x IRn is already given in its matrix
form. We have nq 1, 2 or 4, for P IR, : or l[-I, respectively, and if we put b 1, 2 or 4, then vi b(i 1)
and Ixi b(m i). Then di d is constant, and equals (m+1)/2 in 1,; equals m in ; and equals 2m- in

Ifv V, then v nr is the well-known representation of a positive definite matrix. We know by (4.5)
that (v) tii. Then the delta function equals A(v) ql...tmm; i.e. it is equal to the determinant ofv and
the norm is N(v) ld(v)...fYPmd(v) (A(v))d (det v)d.
2) The Light Cone. This is the only symmetric cone not having a classical representation as a matrix cone.
It is the set V_ 1,n of all elements v such that VlV2 v32 Vn2 > 0 and v2 > 0. Here m 2. The matrices
from section 3 are 22 matrices A with al Vl, a22 v2 and a12 (v3 Vn). Thus we have n12 n-2 and

nl 0, n2 n-2, n n-2 and n2 0. It follows that dl d2 n/2.

NowA ttr with an upper triangular matrix of the same type. In this product the entries of the form
tii t12 are SCalar by vector products and t12 t12 is the inner product of two (n-2)-vectors. If we write down this
product we find

l(V) tl 12 al a12a12/a22 Vl (v32 +...+ Vn2)/v2 2(v) t222 a22 v2.
The delta function is A(v) bl(v)cl2(v) VlV2 v32 vn2, and the norm N(v) (A(v))n/2.
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3) The Non-selfdual Cone in IRS. This is the first non-selfdual cone (of smallest possible dimension). It is
the set V of all elements v E5 such that VlV3 v42 > 0, v2v3 v52 > 0 and v3 > 0. In fact these inequalities
are found by starting with the "matrices", which are now of the form

0 a2 a2
a13 a23 a33

with all entries real. Here we have nl2 0 and n13 n23 (it is indeed the smallest possible choice with

nij different). Thus we have dl d2 3/2 and dl= 2. Such matrices are multiplied as ordinary matrices,

except that we always write 0 in the 12 position: for example a13b32 0 and a23b31 0. A matrix A is an
element of the cone if it is repesentable as A ttT with an upper triangular matrix of the same type. Then
we compute the elementary power functions

Ol(V) tl 12 all a1321a33 O2(v) t222 a22 a232/a33 3(v) t332 a33.
Write (Vl,V2,V3,v4,v5) (al l,a22,a33,a12,a13); then the conditions ,(v) > 0 give the defining inequalities of
the cone. The norm is equal to N(v) l(v)3f2 2(v)3f2 3(v)2.
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