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ABSTRACT. The object of this paper is to establish an expansion theorem for a regular indefinite

eigenvalue problem of second order differential equation with an eigenvalue parameter ,k in the two

boundary conditions We associated with this problem a J-selfadjoint operator with compact resolvent

defined in a suitable Krein space and then we develop an associated eigenfunction expansion theorem
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1. INTRODUCTION
The regular fight-definite eigenvalue problem with eigenparameter in the two boundary conditions

where r(x) and q(z) are positive functions on [a, b] has been studied by Zayed and Ibrahim [1]
Daho and Langer [2] have made an extension of Everitt’s paper [3] and have replaced the Hilbert

space in some cases by a Pontragin space with index one. Everitt [3] has shown that for a 6 [0, ] the

singular Sturm-Liouville with indefinite weight function r(x) can be represented by a selfadjoint operator

in a suitable Hilbert space
Recently, Fleckinger and Mingarelli [4] have studied an indefinite problem with the usual

homogeneous Dirichlet or Neumann boundary conditions.

The object of this paper is to study the following regular indefmite eig6nvalue problem of order two

consisting ofthe ordinary differential equation

1= -- [-(r’)’ +q()] =, e [,] ( )

together with the boundary conditions

Ms(u) := [alu(a)- a2(pu’)(a)] AR.(u):= ,[a3’/2(a -4(pt)(a)], (1 2)

Mz(u := [91u(b)- (pu’)(b)] ARz(u := A[u(b)-/94(pu’)(b)], (l 3)

where we assume throughout that:

(i) The functions p(x), p’(x), q(x) and r(x) are real continuous functions on [a,b] with p(z) > 0

and continuously differentiable.

(ii) Both the weight function r(x) and the potential function q(x) change sign on [a, b] in the sense

that the problem (1 1)-(1.3) is an indefinite.

(iii) The numbers a, ,; 1, 2, 3, 4 are real such that
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Pl and P2 >o. (4)

The parameter A is a complex number.

In this paper, our approach is to give a Krein space formulation to problem (1 1)-(1.3) and a

J-selfadjoint operator defined in it such that this problem can be considered as the eigenvalue problem of

this operator

2. KREIN SPACE FORMULATION
DEFINITION 2.1. We define a Krein space H ofthree components vectors by

H L[,q(a, b) $ C g C

H+[ % ]H- ( )

with indefinite inner product

1 1

P P2

and the norm

where f, g 6 H such that

Ilfll :- Ifl 2dx / If2 / --03 Ifz f 6. H (23)

f (fl, f2, f3) (fl,/ (fl), R(fl)) (2 4)

in which

Ra(fl) o3fl(a)
Ra(.fi) f/’(b)- Z4(r,.f)(b),

and

(25)

in which

while

R(ffl) 3.ql (12) c4(]9.q[)(a),
Ra(gl) 193g] (b) 4 (pg’ )(b)

H := P+(Ll(a,b 9C 9C)
L,.I+ (a, b) (9 C+ C+,

C+ := {u e C Im# > O} and C_ := {# 6 C Im# < O}. (2.6)

P+ denote the orthogonal projectors in H such that

J:=P+-P- and P++P-=I. (2 7)

Both H+ and H- are Hilbert spaces with respect to the scalar product [., .] and [., .] respectively

and the symbol 4 denotes the direct sum which is orthogonal with respect to the scalar product [., .],
that is, we have

H+ f]H- ={0} and [f+,f-]=0 for f+ ell+/-; f-(f++f-)eH. (2.8)
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The decomposition (2. I) gives rise to a positive definite scalar product (.,.) on H.

(f,g):=[f+,#+]-[f-,g-] for f,#EH, f+,#+/-EH+/- (2 9)

where f f+ + f- and g

REMARK 2.1. (i) According to Definition 2 1, the class of Krein spaces includes Hilbert space
(H- 0) as well as anti-spaces ofHilbert spaces (H+ 0); (see [5]).

(ii) The decomposable, non-degenerate inner product space H is a Krein space [5] if and only if for
every fundamental symmetric operator J, the J-inner product turns H into a Hilbert space, that is, we

have

If, g] (Jr, g), f,g
_
H. (2 10)

DEFINITION 2.2. We define a closed linear operator A D(A) H by

A/:= (r/1,Mo(A), Ma(A)), Vy e D(A) (2.11)

such that

M,(f) cif (a) a2(pf)(a),
MO(A) xA()

where the domain D(A) of the closed linear operator A is defined as the set of all f (fl, f2, f3) H
which satisfy the following conditions:

(i) f, f{ are absolutely cominuous functions on [a, b] with

/., (, b) and

(a) h (A),
(iii) f3
REMARK 2.2 (i) The domain D(A) is dense in H with respect to the indefinite inner product

(2.2).
(ii) A is an eigenvalue and f is a corresponding eigenfunction of problem (1.1)-(1.3) if and only it"

f (fl,h, f3) D(A) and Af Af Therefore, the eigenvalues and the eigenfunctions of problem

(1 1)-(1.3) are equivalent to the eigenvalues and the eigenfunctions ofthe operator A.
We consider the following assumptions:

lim [(pf)(z)g(z) f](z)(p)(z)] 0, (2 12)

and

lim [(pf)(z) g (z) fl (z) (p)(z) 0. (2.13)

Integrating the first term of (3.1) by parts twice, we get

3. THE J-SELFADJOINTNESS OF OPERATOR A
DEFINITION 3.1. In the Krein space H, a symmetric operator and a selfadjoint operator with

respect to indefinite scalar product are called ,/-symmetric and J-selfadjoint respectively (see [5]).
LEMMA 3.1. The operator A in H is J-symmetric.

PROOF. On using (2.2), (2.11) and the boundary conditions (1.2)-(1.3), we get

1 1
[Af g]H r(rf)’l dx + M(fl)’ff2 M(fl)3

(pf[)" dx / qfi-ffl dx + - (ARo(fl))Ro(gl) + --P2 (ARa(f))Ra(gl)" (3 1)
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On applying the conditions (2.12)-(2.13) on the first two terms of (3 2) and using the boundary
conditions (1.2)-(1.3), we obtain

1 1
[Af, g]H f,r(rgx)dx + Ra(It)Ma(g) Ra(Ii)Ma(gl)

Pl P2
[/,A]. (3 3)

This proves that the closed linear operator A in H is J-symmetric.
Let J be a conjugation operator on H; this means that J is a conjugate-linear involution with

[Jf, Jf]H [g,f]H g f, g H. (34)

DEFINmON 3.2. The closed linear operator A in H is called a J-selfadjoint in H if D(A) is

dense in H and

A JA*J. (3 5)

As in Knowles [6] we can define an inner product on the domain D(JA’J) by

[f,g]*H [af, Jg]H + [A*Jf, A*JglH, V f, g 6. H. (3 6)

Since J is a conjugation operator on H, we find that (3.6) is equivalent to

[f,g]*l-I [f,g]H + [JA*Jg, JA*Jf]H" (3 7)

With this indefinite inner product, D(JA’J) becomes a Krein space (see Dunford and Schwartz [7,
p. 1225]).

LEMMA 3.2. IfA is a J-symmetric operator in H, then

D(JA’J) D(A).

PROOF. Let

g D(JA" J) (9 D(A), (3 8)

then

If, g] 0, for f . D(A). (3 9)

Making use of(3.7), (3.9) and the fact that JA’Jf Af, for f e D(A) we get

[JA" Jg, Af]H g, f]H" (3.10)

On using the definition of an adjoint operator, (3.1 O) implies

JA’JgED(A’).

This gives

g e D(A"JA’J). (3 I)

From (3.8) and (3.11), we can conclude that the vector function 9 is the zero vector function This

implies that

D(JA’J) D(A). (3 12)

REMARK 3.1. Our closed linear operator A is J-symmetric in Krein space H, the domain D(A) is

dense in H and A JA*J. Therefore, the operator A is J-selfadjoint operator in H (see Race [8]).
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4. THE BOUNDEDNESS OF THE OPERATOR A
In this section we shall show that the J-selfadjoint operator A in H is unbounded from above and

bounded from below. To this end we need the following lemma
LEMMA 4.1. Let f, f’ be continuous functions on [a, b] with Tfl E Lrl(a,b Since p(x) is

continuous on [a, b] as well as p(x) > 0 on [a, b], then there exists a positive constant co with p(x) >_ co
such that

bp(:)IfI(:r.)12dx >_ (b
c

a) I.fl (b) fl (a)]2. (4 1)

PROOF. Schwartz’s inequality gives

p(z)lf(x)12dx > co lYI(x) dx

>- (b a) f[ (x)dx

(b ) I/ (b) -/()

REMARK 4.1. We assume that there is a real number "7 such that

(.) > (), e [,b] (4 2)

for all signs of r(x) and q(x).
LEMMA 4.2. The J-selfadjoim operator A in H is bounded from below
PROOF. On using the boundary conditions (1.2)-(1.3), we get

1 1[Af f]H r(’rfl) fl dx -t- Ma(f) f2 M(fl) f3
Pl P2

)’(f; Td+ ql/ld

P P
(4 3)

Integrating the first term of(4.3) by pans, we find that

(44)

Substituting (4.1), (4.2) into (4.4) and using the boundary conditions (1.2)-(1.3), we obtain

(4 5)

The formula (4.5) can be simplified to take the form



780 S F. M IBRAHIM

JAr, f], > ’7 rlAldz "["--/91 fl(t/)fl(t) 13 + (b )
1

4[/(a f)(a) + f(a)(pf)(a)] + aa4(pf)(a)(pf)(a)

+4(p/:)(b)(pf:)(b) }. (46)

Choose the re nbers a, ,; 1, 2, 3, 4 prodded p,p > 0 d the onstt > 0 d choose

the vues p(a) > O, p(b) > O, f (a), f (b), f (a), f (b) such that the follong inequity is vid

[AI, f]H rlfl
1

P

+ a(pf)(a)(pf{)(b) }
1 (pf)(b)]
P

+ (pS)(b)(pf)(b) }. (47)

The inequity (47) cm be retten in the fo

1 1

P

c Ilfll, (48)

wheree constmt c n(7,1).
LE4.3. The J-selfadjoint operator A H is unbounded from above.

PROOF. Let X(Z) be a test nction in the ein space H th compact suppo on [a, b] d
define a suence ofts test nction by

X(Z) :=X(mZ) for z [a,b], m 1,2,3,..., (49)

On using the same ments ofLena 4.2, wec show that

where c is a constt. Letting m , we get

lim [Ax, X]n . (4 11)

This proves that A in H is unbounded from above.

5. THE EIGENVALUES OF OPERATOR A
The problem (1 1)-(1.3) in the indefinite case gives us positive and negative eigenvalues Thus we

consider the infinite sequence ofthe eigenvalues ofA:

--OO < A

_
A

_
A3

_ _
An < An+l

__
An+2

__
(5 1)

where A,, < 0 < A=+I. For brevity, the eigenvalues and eigenfunctions are together called eigenpairs

DEFINITION 5.1. The J-selfadjoint operator A is called J-non-negative if JAr, f]n > O,

f E D(A).
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THEOREM 5.1. Consider the problem (I.1)-(1.3). There exists at least a finite number of’distinct

positive eigenvalues A,+I, A,+_, A+s whose associated eigenfunctions Cj, j n+ 1, n+2, n+ s,

satisfy [ACj,]H --> 0
PROOF. Suppose there exists h < n + s and the eigenpairs of operator A are h,"

j n + 1, n + 2, such that

[A, OJ]H > 0. (5 2)

We have 0 < {[A’.,.]H/[O:,O]H} 3,, j n + 1,n + 2,n + 3,...,h. Since h < n + s, then

0 <_ ([Ah, Ch]H/[h, bh].} Ah <
Therefore, there exists at least a finite number h; n + 1 < h < n + s. Thus there exists at least a

finite number of distinct positive eigenvalues A,/I,A,+2,...,A,+s; s= 1,2,3,.... This admits the

existence of infinite number positive eigcnvalues "n+, Rn+2, ’,+s, as oo.

TIIEOREM 5.2. Consider the problem (l. l)-(1.3). There exists at most finite number of distinct

negative eigenvalues At, A2, R3, A, whose associated cigenfunctions ; 1, 2, 3, n, satiffy

From above we deduce that the set of real eigenvalues of operator A (negative and positive
eigenvalues), is bounded from below and unbounded from above.

6. TIIE RESOLVENT OPERATOR AND TIIE EXPANSION THEOREM
Suppose that @l(X;,X), @2(x;)), are the fundamental solutions of (I.I) on [a,b] which satisfy the

initial conditions:

(6 l)

where A E C is not an eigenvalue ofthe operator A, and put

which is independent ofx 6 [a, b]. Putting x a, we therefore have:

Mo((a; a)) + a((; )). (6 3)

Similarly, putting z b, we therefore have

It is also from (6. l) that

P((a;A)) p and R(2(b;R)) p2 (6 5)

where p, p2 are given by (1.4).
From (6.1) it is clear that for all A 6 C, M(q1 (a; ,)) ,X/(@I (a; R)), which gives that q1 (x; A)

satisfies the first boundary condition (1.2) at z a and M(q;2(b; A)) RR(@2(b; R)), which gives
that @2(z;R) satisfies the second boundary condition (1.3) at x b. Employing the same type of

argument as in the regular Sturm-Liouville problem [9, Sec. 1.8] it follows that the zeros of o(R) are

real and that if A,, n 1, 2, 3, denotes these zeros, the three-component vectors

are eigenfunctions of operator A satisfies the onhogonality relation
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[,,,,]H=0 for n#rn, (67)

where the indefinite inner product is given by (2.2). The initial conditions (6.1) also serve to guarantee

that /’a (z; A) and 2 (z; A) are entire in A for fixed z, and so it follows that wx (A) is an entire function

of A.
We let

,I,
I111

(,I,(x), R(,I,(x)), (,I,(x))) (6.8)

denote the normalized eigenfunctions and let k # 0 denote the real constant for which

(z;) a(z;) v [a,b] (6.9)

for each zero ofwx(A). By Green’s formula with r(z) which changes sign on [a, hi, we have

w((b; .), (b; )) w((a; ), (; ))(; A)dx (6.10)

We find that

W(1 (b;)n), 1 (b;))) k"1[(2 + ni4)p(b)t (b; ) (1 + An/3)l (b; A)]
k;[,o() + ( )Ra(x(; ))]

and

W(l(a;)n), ]31 (a; ))-- kl [(01 .03)32(a;/n)- (0
;[o(.) + ( .)R(*2(; X.))]
;(- )Ro(2(;.)) (6 12)

where wa(A,,) 0.

Substituting (6.11) and (6.12) into (6.10) we obtain

r(x)ba (x; A,)q (x; A)dx =t= k:
wb(A) R(C(a; .))- aa((b; ))}. (6.13)

Letting A A,, we get

r(x){(x;A.)}2dx 5= k-X{w(A,) P(b(a; A.)) R((b" (6.14)

From (6.5) and (6.9) with A ), we get

and
R((;))

J
(6 15)

On using (6.15) to eliminate/ from (6.14), we can find that

1 1 [2II,,ll2 ,-(z)lCa(z;,L,)12dx / Io(q,(a; ,,))12 /

zl= plR#((b;An))w(An). (616)

Now, for f (fl(x),f2,f3) E H, we define (ql(x), 2, q3) E D(A) as the unique solution

ofinhomogeneous operator equation

(hi- A) f. (617)

Therefore,
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(6 18)

On applying the method ofvariation of parameters, we get

dt

+ dll(Z;,) + (6 19)

where all,d2 are constants and r(z) changes sign on [a,b]. From (6.18) and (6 19) together with the

initial conditions (6.1), we can get the constants all, d2 in the form

1 Odz() f3 "f- l2(t; A)(rfl)(t)dt (6.20a)

and

(6.20b)

provided that r(z) changes its sign on [a, b] according to our indefinite problem (1 1)-(1.3)
Consequently, we deduce that

l(z) ;0x(A) [f3Pl(Z; A) + fg2(a:; A)] + a(z,t;A)(ryx)(t)dt, (6.21)

Ro(X), (6.22)

(6 23)

where G(z, t; A) is the Green’s function of our indefinite problem (1.1)-(1.3) defined by

G(z, t;,)

()

for a < < x < b

for a < x < < b

(6 24)

The form of the equations (6.21)-(6.24) shows that the resolvent operator R(,; A) (M A) -1 is

actually compact; for details of arguments of Theorem 5 in Hellwig [10, p. 1:0] can be used

REMARK 6.1. (i) ,k 0 is not an eigenvalue ofA in Krein space H.
(ii) Since A is a J-selfadjoint operator, then it has real eigenvalues and the corresponding real

eigenfunctions are orthonormal.

(iii) On using Theorem 3 in Hellwig [10, p. 30], we deduce that the density of D(A) in Krein space
H gives the completeness ofthe orthonormal system ofthe real eigenfunctions of A.

The results of our investigations are summarized in the following expansion theorem

THEOREM 6.1. The closed linear operator A in Krein space H has an unbounded set of real

eigenvalues of finite multiplicity without accumulation points in (- oo, oo), and they can be ordered

according to size

A,+,oo as s--oa with

If the corresponding real eigenfunctions <I)l, 2,-.., n, n+l,-.. form a complete onhonormal system,

then for any function f(x) E H, we have the expansion
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in the sense of strong convergence in H

f If, :I:’n]HO, (6 2:5)
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