A CHARACTERIZATION OF RANDOM APPROXIMATIONS

ISMAT BEG

(Received 1 October 1996 and in revised form 25 March 1997)

ABSTRACT. By using Hahn-Banach theorem, a characterization of random approximations is obtained.

Keywords and phrases. Random approximations, characterization, normed space.

1991 Mathematics Subject Classification. 41A50, 41A65, 60H25.

1. Introduction and preliminaries. Random approximation theory is a lively and fascinating field of research lying at the intersection of approximation theory and probability theory. It has received much attention for the past two decades after the publication of a survey article by Bharucha-Reid [4] in 1976. For more details, see [1, 2, 3, 5, 6, 7, 8, 9] and references therein. Random approximation theorems are required for the theory of random equations. The aim of this note is to obtain a characterization of random approximation via the Hahn-Banach theorem. Let (Ω, Σ) be a measurable space with Σ a sigma algebra of subsets of Ω . Let X be a normed space and M be a nonempty subset of X. A map $T : \Omega \times M \longrightarrow X$ is called a random operator if for each fixed $x \in M$, the map $T(\cdot, x) : \Omega \longrightarrow X$ is measurable. Let $B_r(x) := \{z \in X : ||z-x|| \le r\}$ and $\delta(M, x) := \inf_{u \in M} ||x - u||$. In the sequel, cl, int, and X' stand for the closure, interior, and normed dual of X.

In our proof, we use the following geometric version of the Hahn-Banach theorem regarding the separation of convex sets: Let *A* and *B* be two disjoint convex sets in a normed space *X*. Moreover, assume that *A* is open. Then, there is an $f \in X'$ and a real number *c* such that $\operatorname{Re} f(x) > c$ for $x \in A$, and $\operatorname{Re} f(x) \leq c$ for $x \in B$.

2. The results

THEOREM. Let *M* be a nonempty convex subset of a complex normed space X, T: $\Omega \times M \longrightarrow X$ be a random operator, and $\xi : \Omega \longrightarrow M$ be a measurable map such that $T(\omega, \xi(\omega)) \notin cl(M)$. Then ξ is a random best approximation for *T*, i.e., $\|\xi(\omega) - T(\omega, \xi(\omega))\| = \delta(M, T(\omega, \xi(\omega)))$ if and only if there exists $f \in X'$ with the following properties:

(a) ||f|| = 1,

- (b) $f(T(\omega,\xi(\omega)) \xi(\omega)) = ||T(\omega,\xi(\omega)) \xi(\omega)||$, and
- (c) $\operatorname{Re} f(x \xi(\omega)) \leq 0$ for all $x \in M$.

PROOF. Necessity: Assume that $\|\xi(\omega) - T(\omega, \xi(\omega))\| = \delta(M, T(\omega, \xi(\omega)))$. Then *M* and int $(B_r(T(\omega, \xi(\omega))))$, where $r := \|T(\omega, \xi(\omega)) - \xi(\omega)\|$, are disjoint convex sets. By the separation theorem, there is an $f_{\xi(\omega)} \in X'$ and $c \in R$ such that,

ISMAT BEG

$$\operatorname{Re} f_{\xi(\omega)}(x) \le c \quad \text{for all } x \in M \tag{1}$$

and

$$\operatorname{Re} f_{\xi(\omega)}(y) > c \quad \text{for all } y \in \operatorname{int} \left(B_r \left(T(\omega, \xi(\omega)) \right) \right).$$

$$\tag{2}$$

The continuity of $f_{\xi(\omega)}$ implies that,

$$\operatorname{Re} f_{\xi(\omega)}(\gamma) \ge c \quad \text{for all } \gamma \in B_r(T(\omega,\xi(\omega))).$$
(3)

Since $\xi(\omega) \in M \cap B_r(T(\omega,\xi(\omega)))$, $\operatorname{Re} f_{\xi(\omega)}(\xi(\omega)) = c$. Also, since $T(\omega,\xi(\omega)) \in \operatorname{int} B_r(T(\omega,\xi(\omega)))$, it follows that,

$$\beta := \operatorname{Re} f_{\xi(\omega)} \left(T(\omega, \xi(\omega)) \right) - c = \operatorname{Re} f_{\xi(\omega)} \left(T(\omega, \xi(\omega)) - \xi(\omega) \right) > 0.$$
(4)

Let $f = \beta^{-1} r f_{\xi(\omega)}$. This implies that

$$\operatorname{Re} f(T(\omega,\xi(\omega)) - \xi(\omega)) = \operatorname{Re} \beta^{-1} r f_{\xi(\omega)}(T(\omega,\xi(\omega)) - \xi(\omega))$$

$$= \beta^{-1} r \operatorname{Re} f_{\xi(\omega)}(T(\omega,\xi(\omega)) - \xi(\omega))$$

$$= r$$

$$= ||(T(\omega,\xi(\omega)) - \xi(\omega))||.$$
(5)

It further implies that $||f|| \ge 1$.

Suppose that ||f|| > 1. Then there would exist an $h \in X$, with ||h|| < 1, such that f(h) is real and f(h) > 1. For $\gamma = T(\omega, \xi(\omega)) - \gamma h$, we have,

$$\operatorname{Re} f_{\xi(\omega)}(\gamma) = \operatorname{Re} \left[f_{\xi(\omega)} \left(T(\omega, \xi(\omega)) \right) - r f_{\xi(\omega)}(h) \right] = (c+\beta) - \beta f(h) < c.$$
(6)

Since $\gamma \in B_r(T(\omega, \xi(\omega)))$, the above inequality contradicts inequality (3). Hence, ||f|| = 1. As ||f|| = 1, it follows that $|f(T(\omega, \xi(\omega)) - \xi(\omega))| \le ||T(\omega, \xi(\omega)) - \xi(\omega)||$. This and equality (5) imply that $f(T(\omega, \xi(\omega)) - \xi(\omega)) = ||T(\omega, \xi(\omega)) - \xi(\omega)||$. Finally, from inequalities (2) and (3), we obtain,

$$\operatorname{Re} f_{\xi(\omega)}(x - \xi(\omega)) = \operatorname{Re} f_{\xi(\omega)}(x) - \operatorname{Re} f_{\xi(\omega)}(\xi(\omega)) \le 0,$$
(7)

for $x \in M$. Since $f = \beta^{-1} r f_{\xi(\omega)}$, where $\beta^{-1} r > 0$,

$$\operatorname{Re} f(\boldsymbol{x} - \boldsymbol{\xi}(\boldsymbol{\omega})) = \operatorname{Re} \beta^{-1} \boldsymbol{\gamma} f_{\boldsymbol{\xi}(\boldsymbol{\omega})}(\boldsymbol{x} - \boldsymbol{\xi}(\boldsymbol{\omega})) \le 0.$$
(8)

Sufficiency: Let *M* be a nonempty set in a complex normed space *X* and let $\xi : \Omega \longrightarrow M$ be a measurable map. Assume that there is an $f \in X'$ satisfying (a), (b), and (c).

For each $x \in M$,

$$\operatorname{Re} f(T(\omega,\xi(\omega)) - x) \leq |f(T(\omega,\xi(\omega)) - x)|$$

$$\leq ||f|| ||T(\omega,\xi(\omega)) - x||$$

$$= ||T(\omega,\xi(\omega)) - x||.$$
(9)

210

It further implies that

$$||T(\omega,\xi(\omega)) - x|| \ge \operatorname{Re} f(T(\omega,\xi(\omega)) - x)$$

= $\operatorname{Re} f(T(\omega,\xi(\omega)) - \xi(\omega)) - \operatorname{Re} f(x - \xi(\omega))$
 $\ge \operatorname{Re} f(T(\omega,\xi(\omega)) - \xi(\omega))$
= $||T(\omega,\xi(\omega)) - \xi(\omega)||.$ (10)

Hence, $||T(\omega, \xi(\omega)) - \xi(\omega)|| = \delta(M, T(\omega, \xi(\omega))).$

REFERENCES

- [1] I. Beg and N. Shahzad, *Random approximations and random fixed point theorems*, J. Appl. Math. Stochastic Anal. **7** (1994), no. 2, 145–150. CMP 94 14. Zbl 811.47069.
- [2] _____, Applications of the proximity map to random fixed point theorems in Hilbert spaces, J. Math. Anal. Appl. **196** (1995), no. 2, 606–613. MR 96k:47120. Zbl 868.47044.
- [3] _____, On random approximation and coincidence point theorems for multivalued operators, Nonlinear Anal. **26** (1996), no. 6, 1035–1041. MR 97c:47073. Zbl 863.47029.
- [4] A. T. Bharucha-Reid, *Fixed point theorems in probabilistic analysis*, Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–657. MR 54 1390. Zbl 339.60061.
- T.-C. Lin, Random approximations and random fixed point theorems for continuous 1-setcontractive random maps, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167-1176. MR 95e:47088. Zbl 834.47049.
- [6] N. S. Papageorgiou, Fixed points and best approximations for measurable multifunctions with stochastic domain, Tamkang J. Math. 23 (1992), no. 3, 197–203. MR 94b:60074. Zbl 773.60057.
- [7] V. M. Sehgal and S. P. Singh, *A theorem on best approximations*, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 181–184. MR 90b:41054. Zbl 635.41022.
- [8] S. P. Singh and B. Watson, *Proximity maps and fixed points*, J. Approx. Theory **39** (1983), no. 1, 72–76. MR 85c:47057. Zbl 518.47040.
- [9] K. K. Tan and X. Z. Yuan, *Random fixed-point theorems and approximation in cones*, J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. MR 95d:47085. Zbl 856.47036.

ISMAT BEG: DEPARTMENT OF MATHEMATICS, KUWAIT UNIVERSITY, P.O. BOX 5969, SAFAT 13060, KUWAIT