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Abstract. By using Hahn-Banach theorem, a characterization of random approximations
is obtained.
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1. Introduction and preliminaries. Random approximation theory is a lively and
fascinating field of research lying at the intersection of approximation theory and
probability theory. It has received much attention for the past two decades after the
publication of a survey article by Bharucha-Reid [4] in 1976. For more details, see [1, 2,
3, 5, 6, 7, 8, 9] and references therein. Random approximation theorems are required
for the theory of random equations. The aim of this note is to obtain a characterization
of random approximation via the Hahn-Banach theorem. Let (Ω,Σ) be a measurable
space with Σ a sigma algebra of subsets of Ω. Let X be a normed space and M be a
nonempty subset of X. A map T :Ω×M �→ X is called a random operator if for each
fixed x ∈M , the map T(·,x) :Ω �→X is measurable. Let Br (x) := {z ∈X : ‖z−x‖ ≤ r}
and δ(M,x) := infu∈M ‖x −u‖. In the sequel, cl, int, and X′ stand for the closure,
interior, and normed dual of X.
In our proof, we use the following geometric version of the Hahn-Banach theorem

regarding the separation of convex sets: Let A and B be two disjoint convex sets in a
normed space X. Moreover, assume that A is open. Then, there is an f ∈X′ and a real
number c such that Ref(x) > c for x ∈A, and Ref(x)≤ c for x ∈ B.

2. The results

Theorem. Let M be a nonempty convex subset of a complex normed space X,T :
Ω×M �→ X be a random operator, and ξ : Ω �→ M be a measurable map such that
T(ω,ξ(ω)) �∈ cl(M). Then ξ is a random best approximation for T , i.e., ‖ξ(ω) −
T(ω,ξ(ω))‖ = δ(M,T(ω,ξ(ω))) if and only if there exists f ∈ X′ with the following
properties:
(a) ‖f‖ = 1,
(b) f(T(ω,ξ(ω))−ξ(ω))= ‖T(ω,ξ(ω))−ξ(ω)‖, and
(c) Ref(x−ξ(ω))≤ 0 for all x ∈M .
Proof. Necessity: Assume that ‖ξ(ω)−T(ω,ξ(ω))‖ = δ(M,T(ω,ξ(ω))). ThenM

and int(Br (T(ω,ξ(ω)))), where r := ‖T(ω,ξ(ω))−ξ(ω)‖, are disjoint convex sets.
By the separation theorem, there is an fξ(ω) ∈X′ and c ∈ R such that,
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Refξ(ω)(x)≤ c for all x ∈M (1)

and

Refξ(ω)(y) > c for all y ∈ int
(
Br
(
T
(
ω,ξ(ω)

)))
. (2)

The continuity of fξ(ω) implies that,

Refξ(ω)(y)≥ c for all y ∈ Br
(
T
(
ω,ξ(ω)

))
. (3)

Since ξ(ω) ∈ M ∩ Br (T(ω,ξ(ω))), Refξ(ω)(ξ(ω)) = c. Also, since T(ω,ξ(ω)) ∈
intBr (T(ω,ξ(ω))), it follows that,

β := Refξ(ω)
(
T
(
ω,ξ(ω)

))−c = Refξ(ω)
(
T
(
ω,ξ(ω)

)−ξ(ω))> 0. (4)

Let f = β−1rfξ(ω). This implies that

Ref
(
T
(
ω,ξ(ω)

)−ξ(ω))= Reβ−1rfξ(ω)
(
T
(
ω,ξ(ω)

)−ξ(ω))

= β−1r Refξ(ω)
(
T
(
ω,ξ(ω)

)−ξ(ω))

= r
= ∥∥(T(ω,ξ(ω))−ξ(ω))∥∥.

(5)

It further implies that ‖f‖ ≥ 1.
Suppose that ‖f‖ > 1. Then there would exist an h ∈ X, with ‖h‖ < 1, such that

f(h) is real and f(h) > 1. For y = T(ω,ξ(ω))−rh, we have,

Refξ(ω)(y)= Re
[
fξ(ω)

(
T
(
ω,ξ(ω)

))−rfξ(ω)(h)
]
= (c+β)−βf(h) < c. (6)

Since y ∈ Br (T(ω,ξ(ω))), the above inequality contradicts inequality (3). Hence,
‖f‖ = 1. As ‖f‖ = 1, it follows that |f(T(ω,ξ(ω))−ξ(ω))| ≤ ‖T(ω,ξ(ω))−ξ(ω)‖.
This and equality (5) imply that f(T(ω,ξ(ω))−ξ(ω))= ‖T(ω,ξ(ω))−ξ(ω)‖. Finally,
from inequalities (2) and (3), we obtain,

Refξ(ω)
(
x−ξ(ω))= Refξ(ω)(x)−Refξ(ω)

(
ξ(ω)

)≤ 0, (7)

for x ∈M . Since f = β−1rfξ(ω), where β−1r > 0,

Ref
(
x−ξ(ω))= Reβ−1rfξ(ω)

(
x−ξ(ω))≤ 0. (8)

Sufficiency: LetM be a nonempty set in a complex normed space X and let ξ :Ω �→M
be a measurable map. Assume that there is an f ∈X′ satisfying (a), (b), and (c).
For each x ∈M ,

Ref
(
T
(
ω,ξ(ω)

)−x)≤ ∣∣f (T(ω,ξ(ω))−x)∣∣
≤ ‖f‖∥∥T(ω,ξ(ω))−x∥∥
= ∥∥T(ω,ξ(ω))−x∥∥.

(9)
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It further implies that

∥∥T(ω,ξ(ω))−x∥∥≥ Ref
(
T
(
ω,ξ(ω)

)−x)

= Ref
(
T
(
ω,ξ(ω)

)−ξ(ω))−Ref (x−ξ(ω))

≥ Ref
(
T
(
ω,ξ(ω)

)−ξ(ω))

= ∥∥T(ω,ξ(ω))−ξ(ω)∥∥.

(10)

Hence, ‖T(ω,ξ(ω))−ξ(ω)‖ = δ(M,T(ω,ξ(ω))).
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