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Abstract. Let R be a ring, Z its center, and D the set of zero divisors. For finite noncom-
mutative rings, it is known that D\Z �= ∅. We investigate the size of |D\Z| in this case
and, also, in the case of infinite noncommutative rings with D\Z �= ∅.
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It has been known for many years that for certain classes of rings, commutativ-
ity or noncommutativity is determined by the behavior of zero divisors or nilpotent
elements. Among the early theorems illustrating this phenomenon are two due to
Herstein, the second of which is obviously an extension of the first.

Theorem H1 [4]. If R is a finite ring in which all zero divisors are central, then R is
commutative.

Theorem H2 [5]. If R is a periodic ring in which all nilpotent elements are central,
then R is commutative.

From these results we know that a periodic ring which is not commutative must
contain noncentral nilpotent elements. We first consider the question of how large the
set of noncentral zero divisors must be in a finite noncommutative ring, and then we
comment on some related questions for infinite rings. In our final section, we establish
the commutativity of certain rings in which appropriate subsets of nonnilpotent zero
divisors are assumed to be central.

1. Preliminaries. In general, R represents a ring, not necessarily with 1, and Z its
center. For Y an element or subset of R, A(Y) is the two-sided annihilator of Y ; and for
H ⊆ R,|H| denotes the cardinal number of H. The symbols N =N(R), D =D(R), and
S = S(R) denote, respectively, the set of nilpotent elements, the set of zero divisors,
and the set of zero divisors a for which A(a) �= {0}.
In several of our proofs, it is necessary to show that certain sums of zero divisors

are zero divisors. The following lemma is helpful.

Lemma 1.1. Let R be any ring.
(i) If a∈N, b ∈D and ab = ba, then a+b ∈D. Moreover, a+b ∈N if and only if

b ∈N .
(ii) If a∈N ,b ∈ S and ab = ba, then a+b ∈ S.

Proof. (i) We may assume that b ∈ D is a left zero divisor, and choose c �= 0
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such that bc = 0. Let k ≥ 1 be the minimal positive integer for which akc = 0. Then
(a+b)ak−1c = akc+ak−1bc = 0, so a+b ∈D. Finally, if a+b ∈N, then b = a+b−a∈
N since a+b and a commute.

(ii) Let bc = cb = 0, c �= 0. Choose k such that akc = 0 �= ak−1c and choose j such
that ak−1caj = 0 �= ak−1caj−1. Then ak−1caj−1(a+b) = 0 = (a+b)ak−1caj−1, and
hence a+b ∈ S.

2. |D\Z| in finite rings. Our first theorem appears in [6]. However, the proof we
present is very different from, and more elementary than, the proof given in [6]; and
it will shed light on a later question.

Theorem 2.1. Let R be a finite indecomposable noncommutative ring in which |R|
is a power of the prime p. Then |D\Z| ≥ (p2−1)|D∩Z|.

Proof. If R =D, then the fact that [R : Z] cannot be p gives [R : Z] ≥ p2; and we
get |D\Z| = |R\Z| ≥ (p2−1)|Z| = (p2−1)|D∩Z|. Thus, we may assume henceforth
that R �=D, in which case R has 1 and all elements of R\D are invertible.
Observe that by Lemma 1.1(i), if y ∈D and u∈N∩Z, then y+u∈D. Also, observe

that, by the indecomposability of R, there cannot be any nonzero central idempotent
zero divisiors in R; hence, D∩Z ⊆N .
Suppose that D �=N . Since every element of R has an idempotent power, there must

exist a noncentral idempotent e ∈ D. For some x ∈ R, [e,x] �= 0, so either (1−e)xe
or ex(1−e) is noncentral. Assume the latter, let u= ex(1−e), and let f = e+u. Then
f is another idempotent; and ef = f , fe = e, eu= fu=u, and ue =uf =u2 = 0. It
follows by Lemma 1.1(i) that for all i, j = 0,1, . . . ,p−1 with (i,j) �= (0,0), ie+jf+D∩
Z ⊆D\Z . Moreover, if (i1,j1) �= (i2,j2), then (i1e+j1f +D∩Z)∩(i2e+j2f +D∩Z)=
∅. Therefore, |D\Z| ≥ (p2−1)|D∩Z|.
Now suppose that D = N , in which case each element of R is either nilpotent or

invertible—a condition which implies that N is an ideal [8] (in particular, that N is
closed under addition). Therefore, if there exist noncommuting u1, u2 ∈N , then for
each i, j = 0, . . . ,p−1 with (i,j) �= (0,0), iu1+ju2+D∩Z ⊆D\Z ; and, as before, we
have p2−1 pairwise disjoint subsets of D\Z , each of cardinality |D∩Z|.
It remains only to consider the case of D = N and N commutative. Theorem H2

guarantees that N � Z , so there exists a noncentral u ∈ N and an invertible x ∈ R
such that [x,u] �= 0. In this case, the sets iu+ jxu+D∩Z with i, j = 0,1, . . . ,p−1
and (i,j) �= (0,0) provide p2 − 1 pairwise disjoint subsets of D\Z with cardinality
|D ∩ Z|. To see this, note that if these sets contain central elements or fail to be
pairwise disjoint, then there exist i,j ∈ {0,1, . . . ,p−1} with (i,j) �= (0,0) such that
iu+jxu∈ Z. If either i or j is 0, we have the contradiction [x,u]= 0. Otherwise, we
have [iu+jxu,x] = 0, which may be rewritten as (jx+ i)[u,x] = 0. Thus, jx+ i ∈
D = N . Since N is commutative, this gives the contradiction [u,x] = 0. Our proof is
now complete.

Theorem 2.1 is the major step in the proof of the following more general theorem.
The remaining part is a simple lemma given in [6], which we need not repeat.

Theorem 2.2 [6, Thm. 3.4]. If R is a finite noncommutative ring, then there exists
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a prime p such that |D\Z| ≥ (p2−1)|D∩Z|. In particular, |D\Z| ≥ 3|D∩Z|.
Frequently, the noncentralzero divisors aremore abundant than Theorem 2.2 states.

We have

Theorem 2.3. Let R be a finite noncommutative ring with 1; and write R = S1⊕S2⊕
···⊕Sk, where the Si are indecomposable. If n of the Si’s are noncommutative, then
|D\Z| ≥ (4n−1)|D∩Z|, and the bound 4n−1 is best possible.

Proof. For n= 1, the result holds by the previous theorem. Proceeding from n to
n+1, we may assume that R = R1⊕R2, where R1 is the sum of n noncommutative Sj
and R2 is the sum of the other Sj . Let Zi = Z(Ri) and Di = D(Ri), i = 1,2. Note that
an element (a1,a2) ∈ R with ai ∈ Ri, i = 1,2, is central (invertible) if and only if a1

and a2 have the same property in R1 and R2. By the induction hypothesis, |D1\Z1| ≥
(4n−1)|D1∩Z1|; and |D2\Z2| ≥ 3|D2∩Z2|.
Now (a1,a2) ∈ D∩Z if and only if a2 ∈ D2∩Z2 and a1 ∈ Z1 or a2 ∈ Z2\D2 and

a1 ∈D1∩Z1. Thus, we have

|D∩Z| = |Z1||D2∩Z2|+|D1∩Z1||Z2\D2|. (2.1)

The partition R2 = (D2∩Z2) ·
⋃
(Z2\D2) ·

⋃
(D2\Z2) ·

⋃
(R2\(D2∪Z2)) yields four disjoint

possibilities for (a1,a2) to be in D\Z ; and we easily determine that

|D\Z| = |R1\Z1||D2∩Z2|+|D1\Z1||Z2\D2|+|R1||D2\Z2|+|D1||R2\(D2∪Z2)|. (2.2)

Now [R2 : Z2] cannot be prime. Thus, [R2 : Z2] ≥ 4. Since R1 is the sum of n non-
commutative Sj , we have [R1 : Z1]≥ 4n.
We now consider the group of units in R2, namely, R2\D2. The subgroup Z2\D2 is

proper, since for a ∈ N(R2)\Z2, we have 1+a ∈ (R2\D2)\(Z2\D2) = R2\(D2 ∪Z2).
Since the complement of a proper subgroup has cardinality at least that of the sub-
group, then setting |Z2\D2| =α and |R2\(D2∪Z2)| = β, we have β=α, β= 2α, or β≥
3α. Since |R2\Z2| ≥ 3|Z2|, we have |D2\Z2|+β ≥ 3(|D2∩Z2|+α). Hence, |D2\Z2| ≥
3|D2∩Z2|+(3−t)α with t = 1 when β=α, t = 2 when β= 2α, and t = 3 when β≥ 3α,
the last case following from Theorem 2.2. Therefore,

|R1\Z1||D2∩Z2|+|R1||D2\Z2|
≥ (4n−1)|Z1||D2∩Z2|+4n|Z1|

(
3|D2∩Z2|+(3−t)α

)
≥ (4n+1−1)|Z1||D2∩Z2|+4n(3−t)|Z1|α
≥ (4n+1−1)|Z1||D2∩Z2|+4n(3−t)|D1∩Z1||Z2\D2|

(2.3)

and

|D1\Z1||Z2\D2|+|D1||R2\(D2∪Z2)|
≥ (4n−1)|D1∩Z1||Z2\D2|+4nt|D1∩Z1||Z2\D2|. (2.4)

It now follows from (2.1)–(2.4) that |D\Z| ≥ (4n+1−1)|D∩Z|.
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To show that the bound 4n−1 is best possible, let R = S1⊕···⊕Sn, where

S1 = ··· = Sn =






a b d
0 a c
0 0 a



∣∣∣∣∣ a,b,c,d∈ GF(2)


 . (2.5)

Since the center of Si is






a 0 d
0 a 0
0 0 a



∣∣∣∣∣ a,d∈ GF(2)


 (2.6)

and it has two invertible elements, we have |D∩Z| = |Z\(Z\D)| = 4n−2n = 2n(2n−1).
Now the invertible elements of Si are those matrices with a= 1, so

|D| = |R\(R\D)| = 16n−8n = 8n(2n−1)= 4n|D∩Z| (2.7)

and

|D\Z| = (4n−1)|D∩Z|. (2.8)

Remark. If p is the smallest prime dividing |R|, then 4n−1 may be replaced by
p2n−1 in Theorem 2.3.
Theorem H2 suggests that there may be analogues of Theorems 2.2 and 2.3 with D

replaced by N , and indeed there are.

Theorem 2.4. If R is a finite noncommutative ring and p is the smallest prime
dividing |R|, then |N\Z| ≥ (p−1)|N∩Z|.

Proof. It is trivial to show that if u∈N∩Z and v ∈N , then u+v ∈N . Therefore,
if we take u ∈ N\Z, the sets iu+N∩Z, i = 1,2, . . . ,p−1, are p−1 pairwise disjoint
subsets of N\Z , each of cardinality |N∩Z|.

Theorem 2.5. Let R be a finite noncommutative ring, and write R = S1⊕S2⊕···⊕
Sk, where the Si’s are indecomposable. If n of the Si’s are noncommutative and p is the
smallest prime dividing |R|, then |N\Z| ≥ (pn−1)|N∩Z|.

Proof. Proceeding by induction, the case n=1 is Theorem 2.4, and for n ≥ 2 we
may write R = R1⊕R2 with R1,R2 as in the proof of Theorem 2.3. For i= 1,2, denote by
Zi and Ni the sets Z(Ri) and N(Ri), respectively. Clearly, |N∩Z| = |N1∩Z1||N2∩Z2|.
Therefore,

|N\Z| = |N1\Z1||N2|+|N1∩Z1||N2\Z2|
≥ (pn−1)|N1∩Z1|p|N2∩Z2|+(p−1)|N1∩Z1||N2∩Z2|
= (pn+1−1)|N1∩Z1||N2∩Z2|
= (pn+1−1)|N∩Z|.

(2.9)
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Example 2.6. Let R1 =
{[

a b
0 0

]
a,b ∈ GF(p)

}
and let R = R1⊕R1. Then

|D(R1)\Z(R1)| =
(
p2−1)|D(R1)∩Z(R1)|,

|N(R1)\Z(R1)| = (p−1)|N(R1)∩Z(R1)|;
|N(R)\Z(R)| = (p2−1)|N(R)∩Z(R)|.

(2.10)

Thus, the bounds in Theorems 2.2, 2.4, and 2.5 are best possible.

3. Cardinality ofD\Z for infinite noncommutative rings. For infinite noncommu-
tative rings, it is possible to have D ⊆ Z . [6, Ex. 1.1] is such a ring in which D =N . We
give a further example in which D �=N.

Example 3.1. Let K = Z[x,y,z]/(y2,yz) and let δ be the derivation on K de-
fined by δ(x) = y,δ(y) = 0,δ(z) = 0. Let R be the skew polynomial ring K[t;δ]. The
elements of K may be regarded as polynomials of the form f0(x)+ f1(x)z+···+
fn(x)zn+g(x)y , where f0(x), . . . ,fn(x),g(x) ∈ Z[x]. If we let L be the set of such
polynomials with f0(x) = 0, it may be shown that D(R) = L[t;δ] = L(t) ⊆ Z(R). The
details are similar to those in [6, Ex. 1.1] and hence may be omitted.
If R is an infinite noncommutative ring with D\Z �= ∅, then D\Z must be infinite.

In fact, the following stronger result holds.

Theorem 3.2. LetR be an infinite ring. Then |S\Z| = |D\Z|; and if S\Z is nonempty,
then it is infinite.

The proof of this theorem requires a sequence of lemmas.

Lemma 3.3. (i) If R is any infinite ring with D �= {0}, then |S| = |R|.
(ii) If R is any infinite ring with D �= {0} and |S\Z|< |R|, then |Z| = |R|.
Proof. (i) This follows from the proof of [7, Thm. 6].
(ii) Since S = (S\Z) ·⋃(S∩Z) and |S| = |R|> |S\Z|, we have |S∩Z| = |R| and hence

|Z| = |R|.
For the next three lemmas, R is always assumed to be an infinite ring with D �= {0}

and |S\Z|< |R|.
Lemma 3.4. Let V be an infinite additive subgroup of R with V ⊆ S. If |V | > |S\Z|,

then V ⊆ Z and a+V � S for any a∈ R\Z .

Proof. From V = (V\Z) ·⋃(V∩Z) and |V |> |S\Z| ≥ |V\Z|, we obtain |V∩Z| = |V |.
Now, for any group, the cardinal number of the complement of a proper subgroup
cannot be smaller than that of the group. It follows that V = V ∩Z , so V ⊆ Z . Hence,
for a �∈ Z, a+V ⊆ R\Z ; and since |a+V | = |V |> |S\Z|, we obtain a+V � S.

Lemma 3.5. If a ∈ S\Z , then either Za is finite or |Za | ≤ |S\Z|. In either case,
|A(a)| = |R| and A(a)⊆ Z .

Proof. If Za is infinite, then by taking V = Za in Lemma 3.4 and noting that a+
Za ⊆ S, we see that |Za | ≤ |S\Z|. Since |S\Z| < |R| and (by Lemma 3.3(ii)) |Z| = |R|,
we have |Za |< |Z| and this equality also holds if Za is finite.
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Now consider the additive map from Z onto Za given by z � �→ za, z ∈ Z . Its kernel
is A(a)∩Z ; and since Z is infinite and |Za| < |Z|, we get |A(a)∩Z| = |Z| = |R| and
hence |A(a)| = |R|. Another appeal to Lemma 3.4 gives A(a)⊆ Z .

Lemma 3.6. Let R be an infinite ring with D �= {0} and |S\Z|< |R|. Then N ⊆ Z and
D = S.

Proof. Let a∈N\{0}, so that a∈ S and a+A(a)⊆ S. If a ∉ Z, then by Lemma 3.5
we have A(a) ⊆ Z and |A(a)| = |R|, from which it follows that a+A(a) ⊆ S\Z and
|S\Z| ≥ |a+A(a)| = |A(a)| = |R|, in contradiction of our original hypothesis. Thus,
N ⊆ Z . It is straightforward to show that this inclusion implies D = S.
We now have enough background to prove Theorem 3.2.

Proof of Theorem 3.2. If D = {0}, the result is trivial. If |S\Z| = |R|, then obvi-
ously |D\Z| = |R|. If D �= {0} and |S\Z| < |R|, then D = S by Lemma 3.6. Thus, in all
cases |S\Z| = |D\Z|.
Assume that S\Z is finite and nonempty, in which case |S\Z|< |R|. Invoking Lemma

3.5, we see that if a ∈ S\Z , then Za is finite and A(a) ⊆ Z , so that A(a) has finite
index in Z . Let I =A(S\Z), and let B =A(I). Now I is the intersection of finitely many
subgroups of Z of finite index, hence it has finite index in Z ; and since Z is infinite by
Lemma 3.3(ii), I �= {0} and therefore B ⊆ S. If B were infinite, taking V = B in Lemma 3.4
would yield B ⊆ Z , which contradicts the fact that S\Z ⊆ B.Hence B is finite. By Lemma
3.6, N ⊆ Z . Hence, N(B)⊆ Z(B) and B is commutative by Theorem H2. Since S\Z ⊆ B,
we see that S is multiplicatively commutative.
Now choose a ∈ S\Z . Then a ∉ N , the finiteness of B guarantees that some power

of a is a nonzero idempotent e; and since N ⊆ Z, e ∈ Z . It follows that R = eR⊕
A(e); and since S is commutative, both eR and A(e) are commutative and hence R is
commutative—a contradiction. Therefore, S\Z must be infinite.

We note in passing that Lemma 3.6 in conjunction with Theorem H2 yields the fol-
lowing generalization of [2, Thm. 3].

Theorem 3.7. A periodic ring with |S\Z|< |R| is either finite or commutative.

A crucial distinction between infinite rings and finite rings is that in infinite rings,
it is possible to have 0 < |D\Z| < |D∩Z|, which, as pointed out in [6], is equivalent
(in infinite rings) to the condition that |D\Z|< |R|. In fact, |D\Z| may be any infinite
cardinal number less than or equal to |R|, as the following theorem shows.

Theorem 3.8. Given any infinite cardinal numbers α, β with α ≤ β, there exists a
ring R with |R| = β and |D\Z| =α.

Proof. If α= β, we need only take R =M2(F), where F is a field with |F| = β.
If α< β, the following construction yields an example (cf. [6, Ex. 2.1]). Let R1 be any

noncommutative ring with D(R1) ⊆ Z(R1) and |R1| = α. (Such rings may be shown
to exist by replacing Z[x,y,z] by F[x,y,z] in Example 3.1, where F is a field with
|F| =α.) Let R2 be a field of cardinality β. Define R to be R1⊕R2. It is immediate that
|R| = β and it can be easily shown that D(R)\Z(R) is the set of noncentral elements
of R1. Now by Lemma 3.3(ii), |Z(R1)| = α; and since |R1\Z(R1)| ≥ |Z(R1)|, we have
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|D(R)\Z(R)| =α as required.

We remark that the condition that 0< |D\Z|< |D∩Z| imposes fairly strong struc-
tural conditions on R. [6, Thms. 2.12, 2.13, and 2.16] provide structural characteriza-
tions of such rings.

4. Some results involving nonnilpotent zero divisors. Theorem H1 can be im-
proved in another direction. We show that if the finite noncommutative ring R has
D �=N , then (D\N)\Z �= ∅; and if S �=N , then (S\N)\Z �= ∅.
In fact, our discussion goes well beyond the case of finite rings. The fundamental

tool is the following lemma.

Lemma 4.1. (i) If R is a ring with D �=N and D\N ⊆ Z , then N ⊆ Z .
(ii) If R is a ring with S �=N and S\N ⊆ Z , then N ⊆ Z .

Proof. (i) Let a ∈ N and b ∈ D\N . Then a+ b ∈ D\N by Lemma 1.1(i). Thus,
a= a+b−b ∈ Z.

(ii) Use the same argument, but with Lemma 1.1(ii).

Using this lemma and Theorem H2, we obtain the following theorem, which includes
the results for finite rings which we announced at the beginning of this section.

Theorem 4.2. Let R be a periodic ring in which D �= N (resp., S �= N). If D\N ⊆ Z
(resp., S\N ⊆ Z), then R is commutative.

This result can be extended to larger classes of rings. Call a ring R weakly periodic
if R = P +N , where P is the set of potent elements, i.e., the set of x ∈ R for which
there exists an integer n=n(x) > 1 such that xn = x. Call R quasi-periodic if for each
x ∈ R, there exist integers n, m, k with n >m > 0 such that xn = kxm. The classes
of weakly periodic rings and quasi-periodic rings both contain the class of periodic
rings. The containment is proper in the case of quasi-periodic rings (for example, Z
is quasi-periodic). Whether the containment is proper for weakly periodic rings is not
known.
It was proved in [3] that every weakly periodic ring withN commutative is periodic—

a result which, in conjunction with Theorem H2, shows that a weakly periodic ring with
N ⊆ Z must be commutative. It was proved in [1] that every quasi-periodic ring with
N ⊆ Z is commutative. Thus, our lemma yields

Theorem 4.3. Let R be a ring which is either weakly periodic or quasi-periodic. If
D �=N(resp., S �=N) and D\N ⊆ Z (resp., S\N ⊆ Z), then R is commutative.

To conclude the paper, we return to the case of finite rings and present a theorem
analogous to Theorem 2.1.

Theorem 4.4. Let R be a finite indecomposable noncommutative ring in which |R|
is a power of the prime p. If D �=N , then |(D\N)\Z| ≥ (p2−p)|D∩Z|.

Proof. We return to the case D �=N in the proof of Theorem 2.1. (Note that while
this case appears under the assumption that R �=D, the argument also works if R =D.)
Let e, f , and u be as before.
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We showed that for i, j = 0,1,2, . . . ,p−1 and (i,j) �= (0,0), the set ie+jf +D∩Z ⊆
D\Z ; and we now determine which of these sets consist of nonnilpotent elements.
Let x = ie+ jf . Since D∩Z ⊆ N , we see that (x+D∩Z)∩N �= ∅ if and only if

x ∈ N . But x = (i+ j)e+ ju; and since eu = u and ue = u2 = 0, we have xm =
(i+j)me+(i+j)m−1ju for all positive integersm. Thus, x ∈N if and only if i+j ≡ 0
(mod p), and the theorem follows immediately.

We note, in conclusion, that Theorem 4.4 is best possible; the ring R1 of Example 2.6
has |(D\N)\Z| = (p2−p)|D∩Z|.
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