SOME REMARKS ON THE ALGEBRAIC STRUCTURE OF THE FINITE COXETER GROUP F₄

MUHAMMAD A. ALBAR and NORAH AL-SALEH

(Received 10 October 1996 and in revised form 31 January 1997)

ABSTRACT. We consider in this paper the algebraic structure and some properties of the finite Coxeter group F_4 .

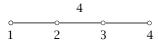
Keywords and phrases. Presentation, Reidemeister-Schreier method, Coxeter groups.

1991 Mathematics Subject Classification. 20F05.

1. Introduction. The group F_4 is one of the irreducible Coxeter groups [9] defined by the presentation

$$F_{4} = \left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid x_{i}^{2} = e, \quad 1 \le i \le 4 \\ \left(x_{1}x_{2} \right)^{3} = \left(x_{3}x_{4} \right)^{3} = \left(x_{2}x_{3} \right)^{4} = \left(x_{1}x_{3} \right)^{2} = \left(x_{1}x_{4} \right)^{2} = \left(x_{2}x_{4} \right)^{2} = e \right\rangle.$$
(1)

It has the graph



It is obvious that the group B_3 whose graph is

		4	
o			_0
1	2		3

is a subgroup of F_4 . The order of B_3 is known to be 48 [4]. It is easy to see that the index of B_3 in F_4 is 24 and hence the order of F_4 is 1152.

2. The structure of F_4 . We define F_4 by the presentation given in Section 1. We consider the symmetric group of degree 3 with the presentation

$$S_3 = \langle x, y \mid x^2 = y^2 = (xy)^3 = e \rangle.$$
(2)

We define the map θ : $F_4 \rightarrow S_3$, where

$$\theta(x_1) = x, \quad \theta(x_2) = y, \quad \theta(x_3) = \theta(x_4) = e.$$
 (3)

It is easy to see that θ is an epimorphism and so $F_4 / \ker \theta \cong S_3$. We use the Reidemeister-Schreier process to find a partition for ker θ .

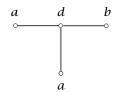
A Schreier transversal for ker θ in F_4 is

$$U = \{e, x_1, x_2, x_1 x_2, x_2 x_1, x_1 x_2 x_1\}.$$
 (4)

The process gives us the following partition for ker θ :

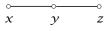
$$\ker \theta = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^2 = (ab)^2 = (bc)^2$$
$$= (ad)^3 = (bd)^3 = (cd)^3 = (ac)^2 = e \rangle.$$
(5)

Therefore, ker θ is the Coxeter group D_4 whose graph is



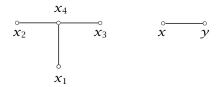
This shows that the group F_4 is the split extension of the Coxeter group D_4 by S_3 .

REMARK 1. To identify the structure of D_4 , we consider the map $\theta : D_4 \longrightarrow S_4$, where D_4 is defined by the graph above and S_4 is defined by the graph



and $\theta(a) = x$, $\theta(d) = y$, $\theta(b) = z$, and $\theta(c) = y$. Using the Reidemeister-Schreier process, we find that ker $\theta \cong Z_2^3$. Thus, D_4 is the split extension of Z_2^3 by S_4 . An alternative method is given in [3], where D_n is shown to be the semi-direct product of Z_2^{n-1} by S_n .

REMARK 2. A third method to show that $F \cong D_4 \rtimes S_3$ follows. We consider D_4 and S_3 as having the following graphs:



where x = (12) and y = (23). We consider the natural action of S_3 or D_4 defined as

 $(x_1, x_2, x_3, x_4)^x = (x_2, x_1, x_3, x_4)$ and $(x_1, x_2, x_3, x_4)^y = (x_1, x_3, x_2, x_4).$ (6)

We let *E* to be the split extension of D_4 by S_3 with this action. A presentation for *E* is

 $E = \langle x_1, x_2, x_3, x_4, x, y |$ Relations of D_4 , Relations of S_3 , Action of S_3 on $D_4 \rangle$. (7) (See [2].) Simple Tietze transformations show that $E \cong F_4$. Hence, $F_4 \cong D_4 \rtimes S_3$.

82

3. The derived series of F_4 . We use the Reidemeister-Schreier process several times to find the derived series of F_4 . Firstly, let F_4 have the presentation in Section 1. $F_4/F'_4 \cong Z_2 \times Z_2$ and we find that $F'_4 = \langle x, y | x^3 = y^3 = (x^{-1}y^{-1}xy)^2 = e \rangle$. The group $F'_4/F''_4 \cong Z_3 \times Z_3$ and we get $F''_4 = \langle a, b, c, d | a^2 = b^2 = c^2 = d^2 = (ab)^2 = (ac)^2 = (cd)^2 = (bdca)^2 = e \rangle$. Finally, $F''_4/F''_4 \cong Z'_2$ and we find $F''_4 = Z_2$. Thus, we have proved that F_4 is solvable of derived length 4.

4. The center and the growth series of F_4 . We have seen in Section 2 that $F_4 \cong D_4 \rtimes S_3$ and that $D_4 \cong Z_2^3 \rtimes S_4$. It is easy to see that the center of D_4 is Z_2 (in general, $Z(D_n) = Z_2$ if n is even and $\{e\}$ if n is odd [3]). Since $Z(S_3) = \{e\}$, we see that $Z(F_4) \subseteq Z(D_4) = Z_2$. Let $Z(D_4)$ be generated by g. From the Reidemeister-Schreier process, we can find g in terms of the generators of F_4 and show that it does not commute with any of them. Hence, $Z(F_4) = \{e\}$.

The growth series (in the sense of Gromov and Milnor) of F_4 is [5]

$$\gamma(F_4) = (1+t)^4 (1+t^2)^2 (1+t^4) (1-t+t^2)^2 (1+t+t^2)^2 (1-t^2+t^4).$$
(8)

The order of F_4 is obtained here as $\gamma(F_4)(1) = 2^4 \times 2^2 \times 2 \times 3^2 = 1152$.

ACKNOWLEDGEMENT. The first author thanks King Fahd University of Petroleum and Minerals for the support he has got to conduct this research.

REFERENCES

- [1] N. A. Al Saleh, *On the finite Coxeter groups*, Ph.D. thesis, College of Girls, Dammam, Saudia Arabia, 1994.
- M. A. Albar, On presentation of group extensions, Comm. Algebra 12 (1984), no. 23-24, 2967-2975. MR 86g:20040. Zbl 551.20017.
- [3] M. A. Albar and N. A. Al Saleh, *The Coxeter group* D_n , submitted.
- [4] _____, On the affine Weyl group of type B_n , Math. Japon. **35** (1990), no. 4, 599-602. MR 91d:20030. Zbl 790.20048.
- [5] M. A. Albar, N. A. Al Saleh, and M. A. Al Hamed, *The growth series of Coxeter groups*, 47 (1998), no. 3, 417-428.
- [6] C. T. Benson and L. C. Grove, *Finite reflection groups*, Bogden & Quigley, Inc., Publishers, Tarrytown on Hudson, N.Y., 1971. MR 52 4099. Zbl 579.20045.
- [7] N. Bourbaki, *Elements de mathematique. Groupes et algebres de Lie*, Actualites Scientifiques et Industrielles, no. 1337, Hermann, Paris, 1968 (French), Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendres par des reflexions. Chapitre VI: systemes de racines. MR 39#1590. Zbl 186.33001.
- [8] N. Broderick and G. Maxwell, *The crystallography of Coxeter groups. II*, J. Algebra 44 (1977), no. 1, 290-318. MR 58 11162b. Zbl 348.20041.
- [9] H. S. M. Coxeter and W. O. J. Moser, *Generators and relations for discrete groups*, fourth ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin, New York, 1980. MR 81a:20001. Zbl 422.20001.
- [10] J. E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002. Zbl 768.20016.
- [11] G. Maxwell, *The crystallography of Coxeter groups*, J. Algebra **35** (1975), 159-177. MR 58 11162a. Zbl 312.20029.
- [12] M. Suzuki, Group theory. I, Grun1dlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin,

MUHAMMAD A. ALBAR AND NORAH AL-SALEH

New York, 1982, Translated from the Japanese by the author. MR 82k:20001c. Zbl 472.20001.

Albar: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

AL-SALEH: DEPARTMENT OF MATHEMATICS, COLLEGE OF GIRLS, DAMMAM, SAUDI ARABIA