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ON AZUMAYA GALOIS EXTENSIONS AND SKEW GROUP RINGS
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Abstract. Two characterizations of an Azumaya Galois extension of a ring are given in
terms of the Azumaya skew group ring of the Galois group over the extension and a Galois
extension of a ring with a special Galois system is determined by the trace of the Galois
group.
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1. Introduction. Let S be a ring with 1,G a finite automorphism group of S of order
n for some integer n invertible in S, SG the subring of the elements fixed under each
element inG, C the center of S, and S∗G the skew group ring ofG over S. In [3] and [2],
S is called an Azumaya Galois extension of SG if it is a G-Galois extension of SG which
is an Azumaya CG-algebra. It was shown that S is an Azumaya Galois extension if and
only if S∗G is an Azumaya CG-algebra. The purpose of the present paper is to give
two more characterizations of an Azumaya Galois extension in terms of the Azumaya
skew group ring S∗G. We show that S is an Azumaya G-Galois extension if and only
if S∗G is an Azumaya algebra over its center Z , a G′-Galois extension with an inner
Galois groupG′ induced by the elements ofG, and ZG is a finitely generated projective
CG-module of rank n. Moreover, for the skew group ring S∗G, where S is a separable
CG-algebra, an expression of the commutator subring of C in S∗G is obtained by using
S and its commutator subring in S∗G. Furthermore, let H be a normal subgroup of G,
K the commutator subgroup of H in G, and H′ the inner automorphism group of S∗G
induced by the elements of H (K′ and (G/H)′ are similarly defined). Then, it is shown
that (S∗G)K′ is a (G/K)′-Galois extension with a Galois system {m−1gj, g−1j /gj in H}
if and only if TrG′(gi) = 0 for each gi not in K, where m is the order of H for some
integer m and TrG′(gi) is the trace of G′ at gi.

2. Preliminaries. Throughout, let S be a ring with 1, G = {g1, . . . ,gn} for some in-
teger n invertible in S, C the center of S, SG the subring of the elements fixed un-
der each element in G, and S∗G the skew group ring of G over S. Let B be a sub-
ring of a ring A. We call A a separable extension of B if there exist {ai,bi} in A,
i = 1, . . . ,m for some integer m, such that

∑
aibi = 1 and

∑
aai ⊗ bi =

∑
ai ⊗ bia

for all a in A, where ⊗ is over B and {ai,bi} is called a separable system for A.
An Azumaya algebra is a separable extension over its center. A ring A is called an
H-separable extension of B if A⊗A is a direct summand of a finite direct sum of
A as an A-bimodule, where ⊗ over B. Denote the commutator subring of B in A by
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VA(B). An H-separable extension A over B is equivalent to the existence of an H-
separable system {di in VA(B);

∑
(xij ⊗yij) in VA⊗A(A)}, j = 1, . . . ,u and i = 1, . . . ,v

for some integers u and v such that
∑
di
(∑

(xij ⊗ yij)
) = 1⊗ 1, i = 1, . . . ,v and

j = 1, . . . ,u. The ring S is called a G-Galois extension of SG if there exist {ci,di in S,i=
1, . . . ,k for some integer k} such that

∑
cidi = 1 and

∑
aigj(bi) = 0 for each gj 
= 1,

where {ci,di} is called a G-Galois system for S. It is well known that an Azumaya
algebra is an H-separable extension and that an H-separable extension is a separa-
ble extension. A skew group ring S∗G is a ring with a free basis {gi} over S such that
gis = (gi(s))gi for each gi in G and s in S. We denote the center of S∗G by Z , the inner
automorphism group of S∗G induced by the elements of the subgroup H of G by H′

(= {g′/g′(x) = gxg−1 for g in H and all x in S∗G}), and the commutator subgroup
of H in G by VG(H).

3. Skew group rings. In this section, keeping the notations of Section 2, we give
two characterizations of an Azumaya Galois extension and an expression of the com-
mutator subring of C in S∗G when S is a separable CG-algebra.

Theorem 3.1. The following statements are equivalent:
(i) S is an Azumaya Galois extension,
(ii) S∗G is an Azumaya Z-algebra and S satisfies the double centralizer property in

S∗G, and
(iii) S∗G is an Azumaya Z-algebra and a G′-Galois extension of (S∗G)G′ , and ZG is

a finitely generated and projective CG-module of rank n.

Proof. (i)⇒(ii). Since S is an Azumaya Galois extension, S∗G is an Azumaya CG-
algebra (that is, Z = CG) and S∗G is an H-separable extension of S [3, Thm. 3.1].
Noting that S is a direct summand of S∗G as a left S-module, we conclude that
VS∗G(VS∗G(S))= S [6, Prop. 1.2].
(ii)⇒(i). Since VS∗G(VS∗G(S))= S, Z is contained in S; and so Z is contained in C . But

then Z = CG. This implies that S∗G is an Azumaya CG-algebra by (ii). Thus, S is an
Azumaya Galois extension [3, Thm. 3.1].
(i)⇒(iii). Since the restriction of G′ to S is G, S∗G is a G′-Galois extension of (S∗G)G′

with the same Galois system as S (for S is G-Galois). Also, by hypothesis, S is an
Azumaya Galois extension, so S∗G is an Azumaya CG-algebra [3, Thm. 3.1]. Moreover,
since Z = CG, ZG is a free Z-module of rank n.
(iii)⇒(i). Since S∗G is a G′-Galois extension of (S∗G)G′ with an inner Galois group

G′, it is an H-separable extension of (S∗G)G′ [7, Cor. 3]. But n is a unit in S, so
VS∗G((S∗G)G

′) is a separable Z-algebra and a finitely generated and projective Z-
module of rank n [7, Prop. 4]. Moreover, S∗G is a G′-Galois extension of (S∗G)G′ , so it
is finitely generated and projective (S∗G)G′-module. Since n is a unit in S, ZG is a sep-
arable Z-algebra. But then VS∗G((S∗G)G

′)= VS∗G(VS∗G(ZG))= ZG by the commutator
theorem for Azumaya algebras [4, Thm. 4.3]. Therefore, ZG is a finitely generated
and projective Z-module of rank n [1, Prop. 4]. From the fact that there are n ele-
ments {gi} of G as generators of ZG, it is not difficult to show that {gi} are free over
Z . Hence, Z is a finitely generated and projective CG-module. Thus, the rank of ZG
over CG is a product of the rank of ZG over Z and the rank of Z over CG; that is,
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n = n(rank of Z over CG). This implies that Z = CG. Therefore, S∗G is an Azumaya
CG-algebra; and so S is an Azumaya Galois extension [3, Thm. 3.1].

Corollary 3.2. Let S be a separable CG-algebra. If VS∗G(S) is a G′′-Galois exten-
sion, whereG′′ is the inner automorphism group of VS∗G(S) induced by and isomorphic
with G, then S is an Azumaya Galois algebra.

Proof. Since VS∗G(S) is a G′′-Galois extension, there exists a G′′-Galois system
{ci,di in VS∗G(S) | i = 1, . . . ,k} for VS∗G(S). Then, it is straightforward to check that
{cj ;

∑
gjdi⊗g−1j , i= 1, . . . ,k and j = 1, . . . ,m for some integers k and m} is an H-sep-

arable system for S∗G over S [1, Thm. 1]. Hence, S satisfies the double centralizer
property in S∗G [7, Prop. 1.2]. Moreover, n is a unit in S, so S∗G is a separable exten-
sion of S. By hypothesis, S is a separable CG-algebra, so S∗G is a separable CG-algebra
by the transitivity of separable extensions. But then S∗G is an Azumaya Z-algebra.
Therefore, S is an Azumaya Galois extension by Theorem 3.1.

For the skew group ring S∗G of G over a separable CG-algebra S, we next give an
expression of VS∗G(C) in terms of S and VS∗G(S) (for more about VS∗G(S), see [1]).

Theorem 3.3. If S is a separable CG-algebra, then
(i) CZ is a commutative separable subalgebra of S∗G and
(ii) SZ, VS∗G(S), and VS∗G(C) are Azumaya CZ-algebras contained in S∗G, such that

VS∗G(C) SZ⊗VS∗G(S), where ⊗ is over CZ.

Proof. (i) Since S is a separable CG-algebra, C is also a separable CG-algebra.
Hence, C⊗Z is a separable Z-algebra, where ⊗ is over CG; and so the homomorphic
image CZ of C⊗Z is also a separable Z-algebra. Clearly, CZ is commutative.
(ii) Since n is a unit in S, S∗G is a separable S-extension. Hence, S∗G is a separable

CG- algebra by the transitivity of separable extensions; and so S∗G is an Azumaya Z-
algebra. But thenVS∗G(CZ) is a separable subalgebra of S∗G such thatVS∗G(VS∗G(CZ))
= CZ [4, Thm. 4.3] (for CZ is a separable subalgebra of S∗G by (i)). This implies that
the center of VS∗G(CZ) is CZ . Thus, VS∗G(CZ) is an Azumaya CZ -algebra. By hypothe-
sis again, S is a separable CG-algebra, so it is an Azumaya C-algebra. Hence, S⊗CZ is
an Azumaya CZ -algebra, where ⊗ is over C . Thus, SZ is also an Azumaya CZ -algebra.
Noting that SZ ⊂ VS∗G(CZ), we conclude that VS∗G(CZ)  SZ⊗VS∗G(SZ), where ⊗ is
over CZ [7, Thm. 4.3]. Moreover, since VS∗G(CZ)= VS∗G(C) and VS∗G(SZ)= VS∗G(S),
we conclude that VS∗G(C) SZ⊗VS∗G(S), where ⊗ is over CZ .

By [3, Thm. 3.1], if S is an Azumaya Galois extension, then S∗G is an Azumaya CG-
algebra (that is, Z = CG) and S is a separable CG-algebra. Thus, we have the following
result.

Corollary 3.4. If S is an Azumaya Galois extension, then VS∗G(C)  S⊗VS∗G(S)
as Azumaya C-algebras, where ⊗ is over C such that VS∗G(C) is a G′-Galois extension
of VS∗G(CG).

Proof. By the above remark, it suffices to show that VS∗G(C) is a G′-Galois exten-
sion of VS∗G(CG). In fact, since S is a G-Galois extension and S ⊂ VS∗G(C), VS∗G(C)
is a G′-Galois extension with the same Galois system as S by noting that VS∗G(C) is
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G′-invariant (for G is the restriction of G′ to S). Moreover, it is clear that (VS∗G(C))G
′ =

VS∗G(CG).

4. A Galois system. It is well known that {n−1gi,g−1i | gi inG} is a separable system
for a separable group ring RG over a ring R with 1, where G = {gi | i = 1, . . . ,n} for
some integer n invertible in R, for a separable skew group ring S∗G over S and for a
separable projective group ring RGf over R as defined in [9]. In this section, we give an
equivalent condition for (S∗G)K′ to have a (G/K)′-Galois system similar to the above
separable system for a normal subgroup K of G.

Theorem 4.1. Let H be a normal subgroup of G and VG(H)=K. Then
(i) K is a normal subgroup of G and
(ii) TrH′(gi) = 0 for each gi not in K if and only if (S∗G)K′ is a (G/K)′-Galois ex-

tension of (S∗G)G′ with a Galois system {m−1gj, g−1j | gj in H}, where m is the order
of H.

Proof. (i) We want to show that giKg−1i ⊂ K for each gi in G. For any x in K
and y in H, gixg−1i y = gixg−1i ygig−1i = gixzg−1i , where z = g−1i ygi. Since H is
normal in G, z is in H. Hence, xz = zx. But then gixg−1i y = gixzg−1i = gizxg−1i =
gig−1i ygixg−1i =ygixg−1i . This implies that gixg−1i is in K. Thus, K is normal in G.
(ii) Assume that TrH′(gi) = 0 for each gi not in K. Then

∑
gjgig−1j = 0, where H =

{gj | j = 1, . . . ,m for some integer m}; that is, ∑gjgig−1j g−1i gi =
∑
gj
(
(gi)′(g−1j )

)
gi

= 0, j = 1, . . . ,m. Hence, (m−1)
∑
gj
(
(gi)′(g−1j )

) = 0 for each gi not in K. Clearly, for
each gi in K, (m−1)

∑
gj
(
(gi)′(g−1j )

) = 1. Thus, {m−1gj, g−1j | gj in H} is a (G/K)′-
Galois system for (S∗G)K′ (for H ⊂ (S∗G)K′), where m is the order of H.
Conversely, (m−1)

∑
gj
(
(gi)′(g−1j )

) = 0 for each gi not in K, so
∑
gjgig−1j g−1i = 0.

Hence,
∑
gjgig−1j = 0; that is, TrH′(gi)= 0 for each gi not in K.

We derive the following corollaries.

Corollary 4.2. S∗G has a (G/K)′-Galois system {n−1gi,g−1i | gi in G}, where K is
the center of G, if and only if TrG′(gi)= 0 for each gi not in K.

Proof. Let H be G. Then K = the center of G; and so the corollary follows imme-
diately from the theorem.

Corollary 4.3. S∗G has a G′-Galois system {n−1gi,g−1i | gi in G} if and only if
TrG′(gi)= 0 for each gi 
= 1.

Proof. This is the case of the theorem that the center of G is trivial.

We derive an equivalent condition for a Galois subring of S∗G arising from a G′-
invariant subring.

Corollary 4.4. Let A be a G′-invariant subring of S∗G and H = {gi in G | gi(a)=
a for each a in A}. Then

(i) H is normal in G and
(ii) Denoting (S∗G)H′ by B and VG(H) by K, TrK′(gi) = 0 for each gi not in H if

and only if {m−1gj,g−1j | gj in K} is a (G/H)′-Galois system for B, where m is the
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order of K.

Proof. Part (i) is straightforward and part (ii) follows immediately from Theo-
rem 4.1.

We conclude the present paper with an example of an Azumaya skew group ring
S∗G which is a G′-Galois extension such that the rank of ZG over CG is not n (see
Theorem 3.1(iii)). Hence, S is not an Azumaya Galois extension by Theorem 3.1.
Let R be the real field, S = R[i,j,k] the quaternion algebra over R, and G = {1,g |

g(x)= ix(i)−1 for each x in S}. Then
(1) S is a G-Galois extension with a Galois system {2−1,2−1j;1,−j}. Hence, S∗G is a

G′-Galois extension with the same Galois system.
(2) Since S∗G is a separable extension of S and S is an Azumaya R-algebra, S∗G is

a separable R-algebra. Hence, S∗G is an Azumaya Z-algebra.
(3) The center Z of S∗G is (R+Ri) by direct computation.
(4) ZG is free over Z by direct verification.
(5) C = R and CG = C = R.
(6) Z is a free R-module of rank 2 and ZG is a free CG-module of rank 4 ( 
= 2 = the

order of G), so one of the three conditions in Theorem 3.1(iii) does not hold.
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