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A SHORT PROOF OF AN IDENTITY OF SYLVESTER
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Abstract. We present two short proofs of an identity found by Sylvester and rediscovered
by Louck. The first proof is an elementary version of Knuth’s proof and is analogous to
Macdonald’s proof of a related identity of Milne. The second is Sylvester’s own proof of
his identity.
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1. Sylvester’s identity. Our purpose in this paper is to present two proofs of a
fundamental identity found in Sylvester’s work, which is in Sylvester’s own words
[17, p. 90], “a simple theorem for expressing, by means of partial fractions, the sum
of the homogeneous powers and products of any number of quantities.”
The identity in question is

hq−n+1(x)=
n∑
r=1
xqr

n∏
i=1
i�=r

1
(xr −xi) , (1.1)

where q is a nonnegative integer and the complete homogeneous symmetric function
hm(x) in the variables x≡ (x1, . . . ,xn) is defined by means of the generating function

∑
m≥0

hm(x)tm =
n∏
i=1

1
1−xit . (1.2)

Further, ifm< 0, then hm(x) is defined to be 0.
Sylvester [16, p. 42] uses the fact that the sum in (1.1) is 0 when q = 0, . . . ,n−2,

and is a polynomial when q ≥ n−1. In his later work on partitions [17], he uses (1.1)
again. But the identity is most clearly formulated only in the lectures he gave in 1859
[18, p. 156]. A little more than a hundred years later, (1.1) was rediscovered by Louck
[8]. Chen and Louck [2] have pointed out that for q = 0,1, . . . ,n−1, the identity was
known to Waring [20] in 1779. The q = n−1 case of (1.1) was rediscovered by Good
[4] in his elegant proof of Dyson’s [3] conjecture.
In Section 2, we will present two short proofs of Sylvester’s theorem. Both involve

partial fraction expansions. The first proof succeeds in finding the left hand side of
(1.1) by starting from the sum in the right hand side and is analogous to Macdonald’s
proof of a related identity. The second is Sylvester’s own proof of his identity and,
as suggested by his description above, transforms the left hand side of (1.1) into the
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sum on the right. Finally, in Section 3, we comment briefly upon the importance of
these identities.

2. Partial fractions. Wefirst consider Macdonald’s clever proof of an identity found
by Milne [12]:

n∑
r=1

(
1−yr

) n∏
i=1
i�=r

[
1−xiyi/xr
1−xi/xr

]
= 1−y1y2 ···yn. (2.1)

Macdonald (see [13]) proved (2.1) by setting t = 0 in the partial fraction expansion

n∏
i=1

(
1−txiyi

)
(
1−txi

) =y1 ···yn+
n∑
r=1

1−yr
1−txr

n∏
i=1
i�=r

[
1−xiyi/xr
1−xi/xr

]
. (2.2)

Our first proof of Sylvester’s identity is analogous to Macdonald’s proof of (2.1). To
prove (1.1), we consider the partial fraction expansion

zq
n∏
i=1

1(
z−xi

) =
n∑
r=1

xqr
z−xr

n∏
i=1
i�=r

1(
xr −xi

) +pq(z), (2.3)

where pq(z)= 0 if q = 0,1, . . . ,n−1. Further, if q ≥n, then it is a polynomial of degree
q−n. Let Fq(x1, . . . ,xn) represent the sum on the right hand side of (1.1). Next, set
z = 0 in (2.3) to obtain

Fq−1
(
x1, . . . ,xn

)= pq(0). (2.4)

Our proof will be complete once we compute pq(0). But pq(0) is nothing but the
constant term in the quotient obtained when zq is divided by

∏n
i=1(z−xi). That is,

pq(0)= the constant term in zq
n∏
i=1

1(
z−xi

)

= the coefficient of zn−q in
n∏
i=1

1(
1−xi/z

)
= hq−n(x),

(2.5)

by comparing with (1.2), it follows that

Fq
(
x1, . . . ,xn

)= pq+1(0)= hq−n+1(x). (2.6)

This completes the derivation of Sylvester’s identity.
Macdonald’s proof of (2.1) is very simple, but the choice of the particular rational

function on the left hand side of (2.2) is unmotivated. A similar remark holds for (2.3).
However, a simple observation remedies this situation.
Once again, consider the sum side of (1.1), where n is replaced by n+1, and xn+1

is renamed z. In this manner, we obtain

Fq
(
x1, . . . ,xn,z

)=
n∑
r=1

xqr
xr −z

n∏
i=1
i≠r

1
(xr −xi) +z

q
n∏
i=1

1
(z−xi) . (2.7)

It is clear that (2.7) is the same as (2.3), our starting point in the proof of Sylvester’s
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identity. The particular choice of the rational function considered is now transparent.
The same observation applies to Macdonald’s proof of Milne’s identity.
This observation is also relevant to Askey’s proof of Milne’s identity, which is re-

produced by Milne [13]. Askey first proved that the sum side of (2.1) is independent
of x1, . . . ,xn. Suppressing even the dependence on y1, . . . ,yn, we let fn denote the left
hand side of (2.1). To complete his proof, Askey found a simple recursion for fn:

fn+1 =yn+1fn+(1−yn+1), (2.8)

from which (2.1) follows quite easily.
Instead, we find another recursion for fn by replacing n by n+1 in (2.1) and taking

the limit as xn+1→ 0. In this manner, we obtain

fn+1−fn =y1 ···yn−y1 ···yn+1. (2.9)

We also have the initial condition f1 = 1−y1. Milne’s identity follows by noting that

f1+
n−1∑
r=1

(
fr+1−fr

)= 1−y1+
n−1∑
r=1
(y1 ···yr −y1 ···yr+1)

= 1−y1 ···yn,
(2.10)

by telescoping. Recursion (2.9) is perhaps even simpler than Askey’s recursion.
The proof of (1.1) presented above is also related to Sylvester’s proof of his identity.

In Sylvester’s notes [18], where (1.1) appears explicitly, he does not include his proof.
But based on his remarks reproduced above and some of his work in his previous
paper [17], it seems likely that he obtained (1.1) by considering the partial fraction
expansion

n∏
i=1

1
z−xi =

n∑
r=1

1
z−xr

n∏
i=1
i�=r

1
(xr −xi) . (2.11)

By equating the coefficients of z−q−1 on both sides of the equation, we immediately
obtain (1.1). Compare this with our computation of pq(0) above.
It is interesting to note that setting z = 0 in (2.11) and replacing xi by x−1i , we obtain

Good’s identity, the q =n−1 case of (1.1).

3. Concluding remarks. Our first proof of Sylvester’s identity is an elementary ver-
sion of the proof given by Knuth [7, §1.2.3, problem 33], who found it necessary to
use Cauchy’s residue theorem. Variations of Sylvester’s proof are given by Chen and
Louck [2] and Strehl and Wilf [15], though these authors prefer to use the Lagrange
interpolation formula rather than partial fractions. Knuth mentions that special cases
of (1.1) are useful in the theory of divided differences. Indeed, (1.1) has been redis-
covered by Verde-Star [19] in this context. It appears in the context of mathematical
physics in the work of Louck and Biedenharn [9, 10]. Far reaching generalizations of
(1.1) have been found by Gustafson and Milne [6] and by Chen and Louck [2].
Milne [12] first proved (2.1) using (1.1). Several other proofs of (2.1), including those

of Macdonald and Askey, are compiled by Milne [13]. Yet another proof is given by
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Strehl and Wilf [15]. Identity (2.1) is fundamental in the study of multiple basic hyper-
geometric series. See, for instance, Milne [11, 13] and Gustafson [5].
Finally, we note that Macdonald’s proof of (2.1) is also relevant. Bhatnagar and Milne

[1] and Schlosser [14] have used (2.2) to generalize the identities which Milne [11]
found using (2.1).
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