A NEW PROOF OF MONOTONICITY FOR EXTENDED MEAN VALUES

FENG QI, SEN-LIN XU, and LOKENATH DEBNATH

(Received 1 January 1997 and in revised form 5 July 1998)

ABSTRACT. In this article, a new proof of monotonicity for extended mean values is given.

Keywords and phrases. Monotonicity, extended mean values, integral form, arithmetic mean, Tchebycheff’s integral inequality.

1991 Mathematics Subject Classification. Primary 26A48; Secondary 26D15.

1. Introduction. Stolarsky [14] first defined the extended mean values $E(r,s;x,y)$ and proved that it is continuous on the domain $\{(r,s;x,y) : r,s \in R, x,y > 0\}$ as follows

$$E(r,s;x,y) = \left(\frac{r \cdot y^s - x^s}{y^r - x^r} \right)^{1/(s-r)} , \quad rs(r-s)(x-y) \neq 0; \quad (1.1)$$

$$E(r,0;x,y) = \left(\frac{y^r - x^r}{\ln y - \ln x} \cdot \frac{1}{r} \right)^{1/r} , \quad (r(x-y)) \neq 0; \quad (1.2)$$

$$E(r,r;x,y) = e^{-1/r} \left(\frac{x^r}{y^r} \right)^{1/(x^r - y^r)} , \quad (r(x-y)) \neq 0; \quad (1.3)$$

$$E(0,0;x,y) = \sqrt{xy}, \quad x \neq y; \quad (1.4)$$

$$E(r,s;x,x) = x, \quad x = y. \quad (1.5)$$

It is convenient to write $E(r,s;x,y) = E(r,s) = E(x,y) = E$.

Several authors including Leach and Sholander [2, 3], Páles [6] and Yao and Cao [15] studied the basic properties, monotonicity and comparability of the mean values E. Feng Qi [9] and in collaboration with Qiu-mig Luo [7] further investigated monotonicity of E from new viewpoints. Recently, Feng Qi [7] generalized the extended mean values and the weighted mean values [1, 4, 5] as a new concept of generalized weighted mean values with two parameters, and studied its monotonicity and other properties.

In this note, a new proof of monotonicity for extended mean values is given.

2. Lemmas. Let

$$g = g(t) - g(t;x,y) = y^t - x^t/t, t \neq 0; \quad (2.1)$$

$$g(0;x,y) = \ln y - \ln x.$$
It is easy to see that \(g \) can be expressed in integral form as

\[
g(t; x, y) = \int_x^y u^{t-1} \, du, \quad t \in \mathbb{R},
\]

and

\[
g^{(n)}(t) = \int_x^y (\ln u)^n u^{t-1} \, du, \quad t \in \mathbb{R}.
\]

Therefore, the extended mean values can be represented in terms of \(g \) by

\[
E(r, s; x, y) = \left(\frac{g(s; x, y)}{g(r; x, y)} \right)^{1/(s-r)}, \quad (r-s)(x-y) \neq 0;
\]

\[
E(r, r; x, y) = \exp \left(\frac{g'(r; x, y)}{g(r; x, y)} \right), \quad x-y \neq 0.
\]

Set \(F = F(r, s) = F(x, y) = F(r, s; x, y) = \ln E(r, s; x, y) \), then \(F \) also can be expressed as

\[
F(r, s; x, y) = \frac{1}{s-r} \int_r^s \frac{g'_t(t; x, y)}{g(t; x, y)} \, dt, \quad r-s \neq 0;
\]

\[
F(r, r; x, y) = \frac{g'_r(r; x, y)}{g(r; x, y)}.
\]

Lemma 2.1. Assume that the derivative \(f''(t) \) exists on an interval \(I \). If \(f(t) \) is an increasing or convex downward function respectively on \(I \), then the arithmetic mean of \(f(t) \),

\[
\phi(r, s) = \frac{1}{s-r} \int_r^s f(t) \, dt,
\]

\[
\phi(r, r) = f(r),
\]

is also increasing or convex downward respectively with \(r \) and \(s \) on \(I \).

Proof. Direct calculation yields

\[
\frac{\partial \phi(r, s)}{\partial s} = \frac{1}{(s-r)^2} \left[(s-r)f(s) - \int_r^s f(t) \, dt \right],
\]

\[
\frac{\partial^2 \phi(r, s)}{\partial s^2} = \frac{(s-r)^2 f'(s) - 2(s-r)f(s) + 2 \int_r^s f(t) \, dt}{(s-r)^3} \equiv \frac{\phi(r, s)}{(s-r)^3},
\]

\[
\frac{\partial \phi(r, s)}{\partial s} = (s-r)^2 f''(s).
\]

In the case of \(f'(t) \geq 0 \), \(\partial \phi(r, s)/\partial s \geq 0 \), thus, \(\phi(r, s) \) increases with \(r \) and \(s \), since \(\phi(r, s) = \phi(s, r) \).

In the case of \(f''(t) \geq 0 \), \(\phi(r, s) \) increases with \(s \). Since \(\phi(r, r) = 0 \), it is easy to see that \(\partial^2 \phi(r, s)/\partial s^2 \geq 0 \) holds. Therefore, \(\phi(r, s) \) is convex downward with respect to either \(r \) or \(s \), since \(\phi(r, s) = \phi(s, r) \). \[\Box\]
Lemma 2.2. Let \(f, h : [a, b] \to \mathbb{R} \) be integrable functions, both increasing or both decreasing. Furthermore, let \(p : [a, b] \to \mathbb{R} \) be an integrable and nonnegative function. Then

\[
\int_a^b p(u) f(u) du \int_a^b p(u) h(u) du \leq \int_a^b p(u) du \int_a^b p(u) f(u) h(u) du. \tag{2.8}
\]

If one of the functions of \(f \) or \(h \) is nonincreasing and the other nondecreasing, then the inequality in (2.8) is reversed.

The inequality (2.8) is called Tchebycheff’s integral inequality; for details, see [1, 4].

Lemma 2.3. Let \(i, j, k \in \mathbb{N} \), we have

\[
g((2i+k+1) + 1) (t; x, y) g((2j+k+1) + 1) (t; x, y) \leq g((2k) + 1) (t; x, y) g((2i+j+k+1)) (t; x, y). \tag{2.9}
\]

If \(x, y \geq 1 \), then

\[
g((i+k)) (t; x, y) g((j+k)(t; x, y) \leq g((k)) (t; x, y) g((i+j+k)(t; x, y). \tag{2.10}
\]

If \(0 < x, y \leq 1 \), then

\[
g((2i+k+1) + 1) (t; x, y) g((2j+k+1) + 1) (t; x, y) \leq g((2k) + 1) (t; x, y) g((2i+j+k+1)) (t; x, y); \tag{2.11}
\]

\[
g((2i+k+1) + 1) (t; x, y) g((2j+k+1) + 1) (t; x, y) \geq g((2k) + 1) (t; x, y) g((2i+j+k+1)) (t; x, y); \tag{2.12}
\]

\[
g((2i+k)) (t; x, y) g((2j+k)) (t; x, y) \leq g((2k)) (t; x, y) g((2i+j+k+1)) (t; x, y). \tag{2.13}
\]

Proof. By Tchebycheff’s integral inequality (2.8) applied to the functions \(p(u) = (\ln u)^2 u^{t-1}, f(u) = (\ln u)^{2i+1} \) and \(h(u) = (\ln u)^{2j+1} \) for \(i, j, k \in \mathbb{N} \), \(u \in [x, y] \), \(t \in \mathbb{R} \), inequality (2.9) follows easily.

By the same arguments, inequalities (2.10), (2.11), (2.12), and (2.13) also follow from Tchebycheff’s integral inequality.

Lemma 2.4. The functions \(g_{(2k+i+1)} (t; x, y) / g_{(2k)} (t; x, y) \) are increasing with respect to \(t, x, \) and \(y \) for \(i \) and \(k \) being nonnegative integers.

Proof. By simple computation, we have

\[
\left(\frac{g((2k+i+1)(t))}{g((2k)(t))} \right)' = \frac{g((2i+k+1))(t)g((2k)(t)) - g((2k+i+1))(t)g((2k+1)(t))}{[g((2k)(t))]^2}. \tag{2.14}
\]

Combining (2.9) and (2.14), we conclude that the derivative of \(g((2k+i+1)(t)) / g((2k)(t)) \) with respect to \(t \) is nonnegative, and \(g((2k+i+1)(t; x, y)) / g((2k)(t; x, y)) \) increases with \(t \).
\[
\frac{\partial}{\partial y} \left(\frac{g^{(2(k+i)+1)}_t(t;x,y)}{g^{(2k)}_t(t;x,y)} \right) = \frac{\partial}{\partial y} \left[g^{(2(k+i)+1)}_t(t;x,y) g^{(2k)}_t(t;x,y) - g^{(2(k+i)+1)}_t(t;x,y) \frac{\partial}{\partial y} g^{(2k)}_t(t;x,y) \right] \\
= \frac{y^{t-1}(\ln y)^{2k}}{[g^{(2k)}_t(t;x,y)]^2} \left[(\ln y)^{2i+1} \int_x^y (\ln u)^{2k} u^{t-1} du - \int_x^y (\ln u)^{2(i+k)+1} u^{t-1} du \right] \geq 0.
\]

(2.15)

Therefore, the desired monotonicity with respect to both \(x\) and \(y\) follows, for the involved functions are symmetric in \(x\) and \(y\). This completes the proof.

\[\square \]

3. Proof of monotonicity

Theorem 3.1. The extended mean values \(E(r,s;x,y)\) are increasing with respect to both \(r\) and \(s\), or to both \(x\) and \(y\).

Proof. This is a simple consequence of Lemma 2.1 and Lemma 2.3 in combination with its integral forms (2.4) and (2.5) of \(E(r,s;x,y)\).

Remark 1. It may be pointed out that the method used in this paper could yield more general results (see [4, 12], and so on).

Acknowledgement. The first author was partially supported by NSF grant 974050400 of Henan Province, China.

References

Qi: Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China

Xu: Department of Mathematics, University of Science and Technology of China, Hefei City, Anhui 230026, China

Debnath: Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br

Hindawi Publishing Corporation
http://www.hindawi.com