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Abstract. First, we introduce sequential convergence structures and characterize Fréchet
spaces and continuous functions in Fréchet spaces using these structures. Second, we give
sufficient conditions for the expansion of a topological space by the sequential closure
operator to be a Fréchet space and also a sufficient condition for a simple expansion of a
topological space to be Fréchet. Finally, we study on a sufficient condition that a sequential
space be Fréchet, a weakly first countable space be first countable, and a symmetrizable
space be semi-metrizable.
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1. Introduction. Let us recall the following definitions in a topological space (X,c)
endowed with the topological closure operator c. We denote the set of all positive
integers by N .
(a) Fréchet [3] (also called Fréchet-Urysohn [2]): for each subset A of X, c(A)= {x ∈

X | (xn) converges to x for some sequence (xn) of points in A}.
(b) sequential [5]: for every subset A of X which is not closed in X, there exists a

sequence (xn) of points in A converging to a point of the set c(A)−A.
(c) weakly first countable [4] (also called g-first countable [1] and [13]): for each

x ∈X, there exists a family {B(x,n) |n∈N} of subsets of X such that the following
conditions are satisfied:

(i) x ∈ B(x,n+1)⊂ B(x,n) for all n∈N ,
(ii) a subset U of X is open if and only if for every x ∈ U there exists an n ∈ N

such that B(x,n)⊂U .
Such a family {B(x,n) |n∈N} is called a weak base at x.
(d) Symmetrizable [8]: there exists a symmetric (= a metric except for the triangle

inequality) d on X satisfying the following condition: a subset U of X is open if and
only if for every x ∈U there is a positive real number r such that B(x,r)⊂U , where
B(x,r) denotes the set {y ∈X | d(x,y) < r}.
(e) Semi-metrizable [7]: there exists a symmetric d on X such that for each x ∈ X,

the family {B(x,r) | r > 0} forms a (not necessarily open) neighborhood base at x.
The basic relationships among these spaces are indicated in the following diagram

(see [4, 5, 6, 7, 8, 13]).
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Fréchet ��
�� sequential��

first countable ��
�� weakly first countable��

semi-metrizable �� symmetrizable.

It is clear that a symmetrizable and first countable space is semi-metrizable and every
symmetrizable space need not be Fréchet (see [6, Ex. 5.1] and [13, Ex. 2.1]).
Many topologists have studied on properties of spaces mentioned above and rela-

tionships among the spaces. In particular, S. P. Franklin in [6, Props. 7.2 and 7.3] gave
sufficient conditions for sequential spaces to be Fréchet and the following theorems
were obtained by G. Gruenhage in [7] and F. Siwiec in [13].

Theorem A [7, Thm. 9.6]. The following statements are equivalent.
(1) X is semi-metrizable.
(2) X is symmetrizable and first countable.
(3) X is symmetrizable and Fréchet.

Theorem B [13, Thm. 1.10]. If a Hausdorff space X satisfies one of the properties
in the second column of the above diagram and is also Fréchet, then it satisfies the
corresponding property in the first column.

The purpose of this paper is to consolidate and investigate properties of Fréchet
spaces. First, we introduce sequential convergence structures and characterize Fréchet
spaces and continuous functions in Fréchet spaces using these structures. Second, we
give sufficient conditions for the expansion of a topological space by the sequential
closure operator to be a Fréchet space and also a sufficient condition for a simple ex-
pansion of a topological space to be Fréchet. Finally, we study on a sufficient condition
that a sequential space be Fréchet, a weakly first countable space be first countable,
and a symmetrizable space be semi-metrizable. And then we obtain generalizations
of Theorems A and B.
Standard notations, not explained below, is the same as in [3, 14].

2. Results

2.1. Sequential convergence structures. Let X be a nonempty set and let S(X)
denote the set of all sequences of points in X. Recall that a nonempty subfamily L of
the cartesian product S(X)×X is called a sequential convergence structure on X [9] if
it satisfies the following conditions:
(SC 1): For each x ∈ X,((x),x) ∈ L, where (x) is the constant sequence whose nth

term is x for all indices n∈N .
(SC 2): If ((xn),x)∈ L, then ((xφ(n)),x)∈ L for each subsequence (xφ(n)) of (xn).
(SC 3): Letx ∈X andA⊂X. If ((yn),x)∈ L for some (yn)∈ S({y ∈X | ((xn),y)∈ L

for some (xn)∈ S(A)}), then ((xn),x)∈ L for some (xn)∈ S(A).
Let SC[X] denote the set of all sequential convergence structures on X.

Theorem 2.1 [9]. For L∈ SC[X], define a function cL : P(X)→ P(X) as follows: for
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each subset A of X, cL(A)= {x ∈X | ((xn),x)∈ L for some (xn)∈ S(A)}. Then, (X,cL)
is a Fréchet space endowed with the topological closure operator cL.

Let �(c) denote the set of all pairs ((xn),x) ∈ S(X)×X such that (xn) converges
to x in a topological space (X,c) endowed with the topological closure operator c.

Theorem 2.2 [9]. For each L∈ SC[X], we have
(1) L⊂�(cL)∈ SC[X],
(2) cL = c�(cL), and
(3)

⋃{L′ ∈ SC[X] | cL = cL′ } =�(cL).

Note that there is an L ∈ SC[X] such that L ≠ �(cL). Let Q be the rational number
space with the usual topology and let LQ = {((xn),x) ∈ S(Q)×Q | (xn) converges
to x in Q} and L = {((x),x) | x ∈ Q}∪ {((xn),x) ∈ S(Q)×Q | (xn) converges to
x in Q and (xn) is either strictly increasing or strictly decreasing}. Then we have
L� LQ =�(cLQ)=�(cL).
According to Theorem 2.1 and Theorem 2.2, we immediately obtain the following

theorem and hence we omit the proof.

Theorem 2.3. A topological space (X,c) is Fréchet if and only if c = cL for some
L∈ SC[X].
Now, we characterize continuous functions in Fréchet spaces using sequential con-

vergence structures.

Theorem 2.4. Let (X,cX) and (Y ,cY ) be two Fréchet spaces endowed with the topo-
logical closure operators cX and cY , respectively, and let LX ∈ SC[X] with cX = cLX .
Then, a function f : (X,cX)→ (Y ,cY ) is continuous if and only if for each ((xn),x) ∈
LX,((f (xn)),f (x))∈�(cY ).

Proof. Let ((xn),x) ∈ LX . Then, by Theorem 2.2(1) and hypothesis, ((xn),x) ∈
�(cX); equivalently, (xn) converges to x in (X,cX). Since f is continuous, it is clear
that ((f (xn)),f (x))∈�(cY ).
Conversely, suppose that there is a closed subset F of Y such that f−1(F) is not

closed inX. Since cX = cLX , it is clear that f−1(F)� cLX (f−1(F)). Letx ∈ cLX (f−1(F))−
f−1(F). Then, by the definition of cLX (see Theorem 2.1), ((xn),x) ∈ LX for some
(xn) ∈ S(f−1(F)). By hypothesis, ((f (xn)),f (x)) ∈ �(cY ), and hence we have that
f(x)∈ F because F is closed. Thus, x ∈ f−1(F), which is a contradiction.
By Theorem 2.4, we have the following well-known fact.

Corollary 2.5. Let (X,cX) and (Y ,cY ) be two Fréchet spaces. Then, a function
f : (X,cX)→ (Y ,cY ) is continuous if and only if f is sequentially continuous.

Proof. Since (X,cX) is a Fréchet space, cx = c�(cX), and hence we can replace LX
by �(cX) in Theorem 2.4 above.

Remark. Note that we thus obtain by Theorem 2.4 a convenient method to check
whether a function in Fréchet spaces is continuous or not. For example, let f be a real-
valued function defined on a subspace X of the real line R with the usual topology and
let LX = {((x),x) | x ∈X}∪{((xn),x)∈ S(X)×X | (xn) converges to x in X and (xn)
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is either strictly increasing or strictly decreasing}. Then, it is obvious that LX ∈ SC[X]
and moreover (X,cLX ) is precisely equal to the space X itself. By Theorem 2.4, we see
that f is continuous if and only if for each ((xn),x)∈ LX,(f (xn)) converges to f(x)
in R.

2.2. Expansions. Let (X,c) be a topological space endowed with the topological
closure operator c. A function c∗ : P(X)→ P(X) defined by for each A ⊂ X, c∗(A) =
{x ∈ X | (xn) converges to x in the space X for some (xn) ∈ S(A)} is called the
sequential closure operator [3] on the topological space (X,c). It is obvious that a
topological space (X,c) is Fréchet (sequential) if and only if for each A ⊂ X, c(A) =
c∗(A) (resp. if A = c∗(A) then A = c(A)). It is known that the sequential closure
operator c∗ on a topological space (X,c) need not be a topological closure operator
on the set X and if c∗ is idempotent, then (X,c∗) is a Fréchet expansion of (X,c).
Consider the following two properties in a topological space (X,c):
(∗) For each countable subset A of X, c(A)⊂ c∗(A).
(∗∗) For each double sequence (or called bi-sequence) (xnm | n,m ∈ N) of points

in X, if for each n ∈ N,((xnm |m ∈ N),yn) ∈ �(c) and ((yn),z) ∈ �(c), then there
exists (pn)∈ S({xnm |n,m∈N}) such that ((pn),z)∈�(c).
We then have easily that the following implications hold: Fréchet⇒ (∗)⇒ (∗∗). But,

according to [10, Ex. 2.4], we see that the converses are not true. Note that (∗∗) is
equivalent to (SC 3) of �(c).

Theorem 2.6 [10]. Let (X,c) be a topological space. If X satisfies the property (∗∗),
then (X,c∗) is Fréchet and moreover, �(c)=�(c∗).

Immediately we have that Theorem 2.6 holds whenever we replace (∗∗) with (∗).
Remark. It is an interesting and important fact that �(c) = �(c∗), even though

c ≠ c∗. From this fact, we have naturally the following:
(1) The properties (∗) and (∗∗) are sufficient conditions for a non-Fréchet space

(X,c) to have the Fréchet expansion (X,c∗).
(2) There are close corelations between some topological properties of the two

spaces (X,c) and (X,c∗). For example,
(i) the separation properties of (X,c) transfer to the space (X,c∗),
(ii) if (X,c∗) is compact (connected or separable), then (X,c) is compact (resp.

connected or separable), and
(iii) (X,c) is sequentially compact if and only if (X,c∗) is sequentially compact, etc.
Let (X,�) be a topological space and � a family of subsets of X. The expansion of

� by � denoted by �(�) is the topology on X with �∪� as sub-base. In case �= {A}
the expansion by � is a simple expansion, denoted by �(A). Simple extensions (ex-
pansions) were introduced by N. Levine in [11]. This and subsequent works have been
concerned with the preservation of topological properties under these expansions. In
particular, J. A. Narvarte and J. A. Guthrie [12] investigated the preservation of Fréchet
spaces, sequential spaces and k-spaces under simple expansions.
We recall that a family � of subsets of X is point finite [14] if and only if each x ∈X

belongs to only finitely many A∈�.

Theorem 2.7. Let (X,�) be a topological space and let � = {c(B)− c∗(B) | B ⊂
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X and c(B)− c∗(B) ≠ ∅}, where c(c∗) is the topological closure operator (resp. the
sequential closure operator) on (X,�). If � is point finite, then (X,�(�)) is a Fréchet
space.

Proof. If (X,�) is a Fréchet space, then clearly �=∅, and so �(�)=�. Hence, it
remains to prove the case that (X,�) is not Fréchet. Let Y ⊂ X and p ∈ c�(�)(Y)−Y ,
where c�(�) is the topological closure operator on (X,�(�)). Since � is point finite,
{A ∈ � | p ∈ A} is finite, say {K1,K2, . . . ,Kn}. Let M = ∩{Ki | i = 1,2, . . . ,n}. Then,
clearly, Y ∩M ≠ ∅ since M is a basic open set in (X,�(�)) containing p. We first
show that p ∈ c�(�)(Y ∩M). Since �∪� is a sub-base for �(�), by the definition
of M , we have that for each basic open set U in (X,�(�)) containing p,(∩{Vj | i ∈
J})∩M ⊂U for some finite family {Vj | j ∈ J and J is finite} of open sets Vj in (X,�)
containing p, and so V ∩M ⊂U for some open set V in (X,�) containing p. Hence, it
is sufficient to show that for each open set V in (X,�) containing p, (Y ∩M)∩V ≠∅.
Suppose on the contrary that there exists an open set V in (X,�) containing p such
that (Y ∩M)∩V = ∅. Then, since M∩V is a basic open set in (X,�(�)) containing
p and since p ∈ c�(�)(Y),Y ∩ (M∩V) ≠∅, which is a contradiction. It is easy to see
that for each subset Z of X, c�(�)(Z)⊂ c∗(Z)⊂ c(Z). Hence, we have that there exists
(xn)∈ S(Y ∩M) such that (xn) converges to p in (X,�). To end the proof, we claim
that (xn) converges to p in (X,�(�)). Suppose that it is not. Then there exists a basic
open set U in (X,�(�)) containing p such that (xn) is not eventually in U . We have
already known that V ∩M ⊂ U for some open set V in (X,�) containing p. It follows
that there is an open set V in (X,�) containing p such that (xn) is not eventually in
V ∩M , and hence (xn) is also not eventually in V because (xn) ∈ S(M), which is a
contradiction.

2.3. Fréchet and related spaces. We start with the following property in a topolog-
ical space (X,c) endowed with the topological closure operator c:
(∗∗∗) For each A ⊂ X and x ∈ X, if x ∈ c(A)−A then there exists B ⊂ A such that

x ∈ c(B) and c(B)−{x} ⊂A.
Obviously, every Hausdorff Fréchet space satisfies the property (∗∗∗). On the other

hand, there are Hausdorff compact spaces satisfying the property (∗∗∗) which are
not sequential and hence are not Fréchet.

Example 2.8. The ordinal space X = [0,ω1], where ω1 is the first uncountable
ordinal, is a Hausdorff compact space which is not sequential (see [10, Ex. 2.4(2)]).
Now we show that X satisfies the property (∗∗∗). Since [0,ω1) is discrete, to show
this it is sufficient to prove that for each A ⊂ [0,ω1), if ω1 ∈ c(A) then there exists
a subset B of A such that ω1 ∈ c(B) and c(B) = B∪{ω1}. If there exists α ∈ [0,ω1)
such that [α,ω1) ⊂ A, then [α,ω1) is a desired subset of A. Hence, it remains to
prove the case where for each α ∈ [0,ω1), (α,ω1) � A. We first recall a definition
that a subset C of [0,ω1] is an interval if and only if for each α,β ∈ C with α � β,
[α,β]⊂ C . Then, it is clear that A is the union of infinitely many intervals: A=∪{Ci |
i ∈ I}, where Ci is an interval for each i ∈ I and Ci∩Cj = ∅ if i ≠ j. Let αi denote
the first element of Ci for each i ∈ I. Note that I must be uncountable. Suppose on
the contrary that I is countable. Then, let 10 be the first element of I and assume
α10 ≠ 0,(αi−1 | i∈ I)∈ S([0,ω1)−A), and hence sup{αi−1 | i∈ I}�ω1 since there
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does not exist any sequence in [0,ω1) converging to ω1. It follows that for each α
with sup{αi−1 | i ∈ I} � α �ω1, [α,ω1) ⊂ A. It is impossible in this case. Thus we
have immediately that (αi | i ∈ I) is a net in A converging to ω1 and there isn’t any
interval in the range {αi | i ∈ I} of the net (αi) which contains more than one point.
From this, we see that c({αi | i∈ I})= {αi | i∈ I}∪{ω1}, and so it is a desired subset
of A. The proof is complete.
From the above facts and the following two examples:
(1) the Sierpiński space, X = {a,b} with the topology {∅,X,{a}}, is a Fréchet space

satisfying the property (∗∗∗), but not Hausdorff, and
(2) the spaceX = {a,b,c}with the topology {∅,X,{a}} is Fréchet, but doesn’t satisfy

the property (∗∗∗) and not Hausdorff, we have that the three properties (∗∗∗),
Fréchet and Hausdorff are independent.

Theorem 2.9. Every sequential space satisfying the property (∗∗∗) is Fréchet.

Proof. Suppose that there exists a sequential space (X,c) satisfying the property
(∗∗∗) which is not Fréchet. Then, there exists a subsetA of X such that c(A)≠ c∗(A),
let x ∈ (c(A)− c∗(A)). By (∗∗∗), there is a subset B of A such that x ∈ c(B) and
c(B)−{x} ⊂A. Let C = c(B)−{x}. Clearly, c(C)= c(B) and c(C)= C∪{x}. Hence, by
sequentiality of X, we have that there exists (xn) ∈ S(C) such that ((xn),x) ∈ �(c),
and so x ∈ c∗(C), which is a contradiction.

Theorem 2.10. Every weakly first countable space satisfying the property (∗∗∗)
is first countable.

Proof. Let (X,c) be a weakly first countable space satisfying the property (∗∗∗).
Then, for each x ∈ X, there is a weak base {B(x,n) | n ∈ N} at x. To prove this, it
suffices to show that for each x ∈ X and each n ∈ N, B(x,n) is a neighborhood of
x in the space X. Suppose on the contrary that there are x ∈ X and n ∈N such that
x ∉ int(B(x,n)), where int(B(x,n)) denotes the interior of B(x,n) in X. Then, clearly,
x ∈ c(X−B(x,n)). Since X satisfies the property (∗∗∗), there exists a subset Y of
X−B(x,n) such that x ∈ c(Y) and c(Y)−{x} ⊂ X−B(x,n). Since X−c(Y) is open
in X and B(x,n) ⊂ ((X−c(Y))∪{x}), by condition (ii) of the definition of weak first
countability, we have that the set (X−c(Y))∪{x} is open in X and Y ∩((X−c(Y))∪
{x})=∅, which is a contradiction.
The following corollaries follow directly from Theorem 2.10.

Corollary 2.11. Every weakly first countable, Hausdorff and Fréchet space is first
countable.

Corollary 2.12. Every symmetrizable space satisfying the property (∗∗∗) is first
countable and hence semi-metrizable.

Remark. (1) Notice that Corollary 2.11 was stated by A. V. Arhangel’skii [1] without
proof and a proof can be found in F. Siwiec [13, Thm. 1.10].
(2) One can easily observe that Corollary 2.12 is in part a generalization of Theorem

A [7, Thm. 9.6]. Note that in a Hausdorff spaceX, X is a symmetrizable space satisfying
the property (∗∗∗) if and only if X is symmetrizable and first countable.
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(3) From Theorems 2.9, 2.10 and Corollary 2.12, we know that the property (∗∗∗)
is a sufficient condition that a topological space satisfying one of the properties in
the second column of the above diagram given in the introduction satisfy the cor-
responding property in the first column. This is a generalization of Theorem B [13,
Thm. 1.10].
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