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TILINGS IN TOPOLOGICAL SPACES
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Abstract. A tiling of a topological spaceX is a covering ofX by sets (called tiles) which are
the closures of their pairwise-disjoint interiors. Tilings of R2 have received considerable
attention (see [2] for a wealth of interesting examples and results as well as an extensive
bibliography). On the other hand, the study of tilings of general topological spaces is just
beginning (see [1, 3, 4, 6]). We give some generalizations for topological spaces of some
results known for certain classes of tilings of topological vector spaces.
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1. Introduction. A tiling of a topological space X is a covering of X by sets (called
tiles) which are the closures of their pairwise-disjoint interiors.
Tilings of R2 have received considerable attention (see [2] for a wealth of interesting

examples and results as well as an extensive bibliography). On the other hand, the
study of tilings of general topological spaces is just beginning (see [1, 3, 4, 6]).
By way of notation, for a subspace A of a topological space X, the symbols A, FrA,

and A◦ denote, respectively, the closure, boundary, and interior of A. For a collection
� of subsets of a set X, we denote by,

⋃
� and

⋂
�, respectively, the union and inter-

section of the members of �. For a point x ∈X, we define �(x)= {A∈� : x ∈A}.
The following definitions are basic to our discussion. Let � be a tiling of a topological

space X. We define the set of frontier points of � to be the union of the boundaries
of the tiles in � and denote this set by F(�). The protected points of � constitute
the set P(�)= {x ∈ X : x ∈ (⋃�(x))◦} and the complement of this set in X is U(�),
the set of unprotected points of �. The set of improper points of � is defined as
I(�)= {x ∈ X : �(x)= {T} with x ∈ FrT}. The set of 2-protected points is P(�)2, the
subset of protected points common to exactly two tiles.
A singular point of � is a (frontier) point at which � is not locally finite (that is, a

point every neighborhood of which intersects infinitely many tiles in �). The collection
of all singular points of � is denoted by S(�). Finally, we define S0(�) = {x ∈ S(�) :
�(x) is infinite}.
The relations between the sets defined above have been established in [4, 6] (for

topological vector spaces, but they remain valid for topological spaces) and are sum-
marized in the following proposition.

Proposition 1.1. For any tiling � of any topological space X, the following inclu-
sions hold: S(�)∩P(�) ⊂ S0(�) ⊂ S(�) ⊂ F(�) and I(�) ⊂ U(�) ⊂ S(�). Moreover,
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F(�) and S(�) are closed sets.

None of these inclusions can be improved, as [4, Ex. 1.1] shows.

2. Star-finite tilings. A tiling is called star-finite if each tile meets only finitely many
other tiles.
Two tilings � and �1 of the same space X are said to be topologically equivalent if

and only if there exists a homeomorphismh :X →X such that if T ∈�, thenh(T)∈�1

(thus, also if T1 ∈�1, then h−1(T1)∈�).
Nielsen defined in [4] four properties that a tiling in a vector topological space could

satisfy. Only two of these properties have sense in topological spaces and are quoted
below.
A tiling � of a topological space X satisfies property P3 if and only if for each T ∈�,

x ∈ FrT , and neighborhood U of x, there is an open neighborhood V of x, V ⊂ U ,
such that V −FrT has exactly two connected components.
A tiling � of a topological space X satisfies property P4 if and only if for each

proper subcollection � ⊂ � and each pair of distinct tiles T1 and T2 in �, the set
T1∩T2∩Fr(

⋃
�) is nowhere dense in Fr(

⋃
�).

It is proved in [4] that P3 implies P4 and one can easily see that the proof given
there for topological vector spaces remains valid for arbitrary topological spaces. The
reverse implication is false.
We denote, by CondA, the set of condensation points of A. The following result is

the first part of [4, Thm. 3.1].

Theorem 2.1. If � is a star-finite tiling of a topological space, then U(�)= S(�)⊃
S1(�)⊃ Cond(S1(�)).

The following lemma is quoted from [4, Lem. 3.3].

Lemma 2.2. Suppose M and N are closed subsets of a topological space such that
M = Cond(M), N ⊂M , and N is nowhere dense in M . Then M = Cond(M−N).

Theorem 2.3. If � is a star-finite tiling that possesses P3 of a topological space such
that no connected open set can be disconnected by deleting a countable subset, then
U(�)= S(�)= I(�)= Cond(I(�)).

Proof. The proof is essentially the same as that of [4, Thm. 3.4]. We only have to
note that the role of the point 0 in that proof can be equally replaced by any other
point of X and that we can avoid the reference to [4, Lem. 3.2] (which uses essentially
the vector structure) using the additional hypothesis over X and over � (in [4, Thm.
3.4] it is only supposed that � is P4) in the following way.
We need to show that M ⊂ CondM , where M is the frontier of the union of a finite

set of tiles. If this were not true, then there would be a point x ∈M such that every
open neighborhood of it intersects M in a countable set of points. Let T be a tile
such that x ∈ FrT . By P3, we have that if V is a connected open neighborhood of x,
V −FrT = V −(V ∩FrT) has two components, contradicting both the fact that the set
V ∩FrT is countable and the hypothesis over X.

Note that the topological hypothesis imposed on X is verified by every topological
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vector space of dimension greater than one. And the more restrictive hypothesis of
being � P3 instead of P4 is easier to check than the other.

3. Tilings and density of certain classes of frontier points. We can easily note
that [6, Thm. 1.4, Cor. 1.5, Thm. 1.6, Cor. 1.7] do not need the vector structure. Hence,
they can be stated as follows.

Theorem 3.1. Let X be a topological space such that every closed subset of it is a
Baire space in the subspace topology (for example, completely metrizable spaces). Let
� be a countable tiling of X with property P3. Then the set P2(�)∩R(�) is dense and
open in F(�).

Corollary 3.2. If X and � are as in Theorem 3.1, the set S(�) of singular points
of � is nowhere dense in F(�).

Theorem 3.3. If X and � are as in Theorem 3.1 and � is a countable tiling of X
with property P4 and with F(�)− I(�) of second category in F(�) at each point of
F(�), then P2(�) is dense and open in F(�).

Corollary 3.4. If X and � are as in Theorem 3.3, the set S(�) of singular points
of � (and thus I(�)) is nowhere dense in F(�).

Note that Corollaries 3.2 and 3.4 have the same thesis for two noncomparable hy-
potheses (P3 implies P4, but it does not imply that F(�)− I(�) is of second category
in F(�) at each point of F(�)).
On the other hand, Nielsen [6, Thm. 1.8] has a topological thesis, but the vector

structure is essential in the hypothesis.

Theorem 3.5. Let X be a separable normed space such that every closed subspace
of it is a Baire space in the subset topology. Let � be a countable tiling of X such that
any line that sections � contains at most countably many points of F(�). Then P2(�)
is dense and (relatively) open in F(�).

A carefull study of the proof shows that the vector hypothesis is used once in order
to establish a lemma with topological thesis and supposed that thesis, the rest of the
proof is valid for topological spaces. The lemma needs the following definition.

Definition 3.6. Let X be a topological space. A tiling � on X is called connected
if given an open set V intersecting F(�), the set of points of V common to exactly two
tiles in � is of second category in V ∩F(�).
And, hence, Theorem 2.3.12 of Nielsen’s Ph.D. Thesis states the following:

Lemma 3.7. Let X be a separable normed space such that every closed subspace of
it is a Baire space in the subset topology. Let � be a countable tiling of X such that any
line that sections � contains at most countably many points of F(�). Then the tiling is
connected.

For topological spaces, we have the following results:

Lemma 3.8. Let X be a topological Baire space, � a connected countable tiling, and
let U be an open set in X intersecting F(�). Then there are two tiles T1 and T2 in � and
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an open set V ⊂U intersecting F(�) such that V∩F(�)⊂ T1∩T2 and such that the set
{x ∈ V : �(x)= {T1,T2}} is dense in V ∩F(�).

Proof. The proof is the same as in Nielsen’s Ph.D. Thesis for the case of normed
separable spaces, but as it does not appear in [3, 4], or [6], we quote it here for the
sake of completeness.
From the hypothesis, the set of points of V common to exactly two tiles in � is of

second category in U∩F(�). Since � is countable and F(�) is closed (and, thus, is a
Baire space by assumption), it follows, from the Baire category theorem, that for some
two tiles T1 and T2 in �, the set of points common to exactly T1 and T2 is not nowhere
dense in U∩F(�). Thus, there is an open set V ⊂ U intersecting F(�) such that the
points in V common to exactly the tiles T1 and T2 are dense in V ∩F(�). But T1∩T2
is closed, so we must also have T1∩T2 ⊃ V ∩F(�).

Theorem 3.9. LetX be a topological Baire space and� a connected countable tiling.
Then P2(�) is dense and (relatively) open in F(�).

Proof. Again, the proof is the same as in Nielsen’s Ph.D. Thesis.
That P2(�) is relatively open in F(�) follows immediately from the definitions. Let

U be a connected open set in X intersecting F(�). We show that U contains points of
P2(�), which proves the theorem.
By the preceding lemma, there are two tiles T1 and T2 in � and an open set V ⊂ U

intersecting F(�) such that V ∩ F(�) ⊂ T1∩T2 and such that the set ET1,T2 = {x ∈
V ∩F(�) : �(x) = {T1,T2}} is dense in V ∩F(�). Let T i = T1∪T2 and define a new
tiling �i of X by �i = {T i}∪(�−{T1,T2}).
Assume, to reach a contradiction, that V ∩F(�i)= V ∩F(�)(≠∅).
Applying again the preceding lemma, we obtain a tile T3 ∈�i−{T i} = (�−{T1,T2})

and an open set W ⊂ V ⊂U intersecting F(�) such that W ∩F(�)=W ∩F(�i)⊂ T3.
This, however, contradicts the fact that ET1,T2 is dense in U∩F(�). Thus, we must

have V ∩(F(�)−F(�i))≠∅. Since F(�)−F(�i)⊂ P2(�), the proof is now complete.

Corollary 3.10. Let X be a topological Baire space and � a connected countable
tiling. Then S(�) is nowhere dense in F(�).

Compare with Corollaries 3.2 and 3.4.

4. Facets and vertices of a tiling. To complete our study of tilings of topological
spaces, we are going to consider a generalization of a result by Breen that Nielsen did
not consider in the realm of topological vector spaces.
Given a tiling � of a topological space X, a facet of the tiling is a connected compo-

nent of the intersection of some finite set of tiles. We say that a facet is degenerated
if it is a singleton (in that case, we call that facet a vertex). In any other case, we say
that the facet is nondegenerated. (In the case of countable tilings by topological disc,
these definitions correspond to those of [1].)
Call D(�) the set of points in F(�) that are not in a nondegenerated facet of �.

In [1], one can find a relation between the cardinals of D(�) and S(�) for countable
tilings of the plane by closed topological discs.



TILINGS IN TOPOLOGICAL SPACES 615

We show that one of the two parts of that relation can be extended to topological
spaces withweak restrictions on the tiling and that the other is false even for countable
tilings by topological balls of the euclidean space.

···

Figure 1. A tiling in R.

Theorem 4.1. Let X be a topological space and � a tiling such that FrT is locally
connected for each tile T ∈ � and suppose that for every T ∈ �, every x ∈ FrT and
every neighborhood U of x, the set (U−{x})∩FrT is nonvoid. Then D(�)⊂ S(�), and
so, |D(�)| ≤ |S(�)|.

Proof. Let x be a point of D(�). We show that x is a singular point. Since I(�)⊂
S(�) by Proposition 1.1, it is enough to show that x is an improper point.
In case every neighborhood of x contains a boundary point of � which belongs only

to a tile T , one can use the above case to construct a net of singular points converging
to x, which completes the proof.

Now, given a point x ∈ D(�), we can assume that x ∈ FrT for certain T ∈ � and
given any neighborhood U of x, every point of FrT ∩U belongs to at least two tiles.
Choose x1 ∈ FrT ∩(U−{x}) (since the hypothesis ensures that the set is nonvoid)

and a tile T1 ≠ T with x1 ∈ T1. Suppose that there is some neighborhood V of x such
that FrT ∩V ⊂ T ∩T1. By the hypothesis of local connectedness, we can suppose that
FrT∩V is connected, and so, it is contained in a connected component of T∩T1. Thus,
FrT ∩U is not a singleton, which means that x belongs to a nondegenerate facet and
so x ∉D(�). So for every neighborhoodU of x, there is some point x2 of FrT∩V−{x}
with x2 ∉ T1. Take again the neighborhood U and select a tile T2 ≠ T1,T with x2 ∈ T2.
An induction yields prove that U has points in infinitely many different tiles. Hence,
x is a singular point.

This result is clearly an extension of [1, Lem. 1, Cor. 1]. One can ask if the other part
of the theorem ([1, Lems. 2 and 3, Cor. 2]) can be extended to topological spaces under
suitable hypothesis. The answer is completely negative since we can construct in the
following example a countable tiling of R3 by topological balls that does not satisfy
[1, Cor. 2].
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Example 4.2. Take the product with [0,1] of the tiling by triangles given in Figure 1
and extend to a countable tiling of R3 adding cubes. All the points of the product with
[0,1] of the set of singular points of that tiling are singular in the tiling of R3, but all
of them are in a nondegenerated facet.
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