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Abstract. Let F(a,b;c;z) be the classical hypergeometric function and f be a normalized
analytic functions defined on the unit disk �. Let an operator Ia,b;c(f ) be defined by
[Ia,b;c(f )](z)= zF(a,b;c;z)∗f(z). In this paper the authors identify two subfamilies of
analytic functions �1 and �2 and obtain conditions on the parameters a,b,c such that
f ∈�1 implies Ia,b;c(f )∈�2.
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1. Introduction. Let � denote the class of all normalized analytic functions f(z)
in the unit disc �= {z ∈ C : |z|< 1} of the form

f(z)= z+
∞∑
n=2

anzn. (1.1)

Denote by � the class of all functions in � which are univalent in �. For β < 1 and
real η, we let

Rη(β) :=
{
f ∈� : Re

[
eiη
(
f ′(z)−β)]> 0, z ∈�

}
. (1.2)

It is a well-known result that whenβ≥ 0 we haveRη(β)⊂� and forβ < 0, the functions
in Rη(β) need not be univalent in �. A function f is said to be uniformly convex (UCV)
if the image of every circular arc γ contained in �, with center also in �, is convex.
Analytically, UCV family is characterized as follows:

UCV=
{
f ∈� :

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣≤ Re
{

1+ zf
′′(z)

f ′(z)

}
, z ∈�

}
, (1.3)

see [8].
For α ≥ 0, let UCT(α) denote the subfamily of functions f(z) = z−∑∞

n=2 |an|zn in
� which satisfy the condition [11]

Re
{

1+ zf
′′(z)

f ′(z)

}
≥α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣, z ∈�, (1.4)

for some α≥ 0. In this paper we are mainly interested in the Gaussian hypergeometric
function F(a,b;c;z) defined by

F(a,b;c;z) :=
∞∑
n=0

(a)n(b)n
(c)n

· z
n

n!
, (1.5)

where a,b,c ∈ C with c ≠ 0,−1,−2, . . . . Here (a)0 := 1 for a ≠ 0 and if n is a positive
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integer, (a)n denotes the ascending factorial notation (a)n := a(a+1)···(a+n−1).
In the exceptional case c =−p, where p is a positive integer, F(a,b;c;z) is defined if
a=−m or b =−m, wherem= 0,1,2, . . . andm≤ p. We also note that if a=−m, then
we have (−m)n = 0 for all n ≥m+1 and therefore in this case F(a,b;c;z) becomes
a polynomial of degree m. This observation is to indicate that our main results (see
Theorems 2 and 3(iv)) give also geometrical information for polynomials. It is impor-
tant to point out that the hypergeometric function F(a,b;c;z) can be classified into
three cases according to whether Re(c−a−b) equals zero, negative, or positive. In the
last case, the function F(a,b;c;z) is bounded in � whereas the case Re(c−a−b)≤ 0,
it is unbounded in � as it has a pole at z = 1 in this case. The asymptotic behaviour
of the hypergeometric function F(a,b;c;x) for Re(c−a−b)≤ 0 near the singularity
x→ 1 has been studied in detail by Ponnusamy and Vuorinen [7] and thus improving
several known results in the literature, see [2] or [12, p. 299].

For f ∈ �, we recall the operator Ia,b;c(f ) of Hohlov [3], which maps � into itself,
defined by

[
Ia,b;c(f )

]
(z)= zF(a,b;c;z)∗f(z), (1.6)

where ∗ denotes the usual Hadamard product (convolution) of power series. When
f(z) equals the convex function z/(1− z), then the operator Ia,b;c(f ) in this case
becomes zF(a,b;c;z). We also note that the operator Ia,b;c(f ) is a natural choice
for studying the geometric properties of it because of its interaction with geometric
function theory for the special operator popularly known as Bernardi operator. In
fact the Bernardi operator is a special case of the convolution operator Ia,b;c(f ) when
a= 1, b = 1+γ, c = 2+γ with Re γ >−1:

[
I1,1+γ;2+γ(f )

]
(z) := Bf (z)= 1+γ

zγ

∫ z
0
tγ−1f(t)dt. (1.7)

Here I1,1;2(f ) and I1,2;3(f ) are known as Alexander and Liberia operators, respectively.
In [3] Hohlov determined the conditions to guarantee that Ia,b;c(f ) is univalent in �

for a function f in �.
In this paper, we consider the following problem: for a given a,b,c such that Re(c−

a−b) > 0, we find conditions such that zF(a,b;c;z) ∈ UCV or UCT(α). We also find
conditions such that Ia,b;c(f )∈ UCV if f ∈ Rη(β).

2. Preliminary results. By using the Gauss summation theorem [9, p. 19, eq. (20)],
we immediately have Lemmas 1 and 2

Lemma 1 [6, Lem. 3.2]. Let a∈ C\{0}, c >max{0,2+2Re a}, and

S =
∞∑
n=0

(n+1)2|(a)n|2
(c)n(1)n

. (2.1)

Then we have

S = Γ(c−2Re a)Γ(c)
Γ(c−a)Γ(c− ā)

[
1+ |(a)2|2

(c−2−2Re a)2
+ 3|a|2
c−1−2Re a

]
. (2.2)
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Lemma 2 [6, Lem. 3.3]. Let a,b ∈ C\{0}, c > 0. Then we have the following:
(i) For a,b > 0, c > a+b+1,

∞∑
n=0

(n+1)(a)n(b)n
(c)n(1)n

= Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b)

[
ab

c−1−a−b +1
]
. (2.3)

(ii) For a,b > 0, c > a+b+2,

∞∑
n=0

(n+1)2(a)n(b)n
(c)n(1)n

= Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b)

[
1+ (a)2(b)2

(c−2−a−b)2 +
3ab

c−1−a−b
]
. (2.4)

(iii) For a≠ 1, b ≠ 1, and c ≠ 1 with c >max{0,a+b−1},
∞∑
n=0

(a)n(b)n
(c)n(1)n+1

= 1
(a−1)(b−1)

[
Γ(c+1−a−b)Γ(c)
Γ(c−a)Γ(c−b) −(c−1)

]
. (2.5)

(iv) For a≠ 1 and c ≠ 1 with c >max{0,2Re a−1},
∞∑
n=0

|(a)n|2
(c)n(1)n+1

= 1
|a−1|2

[
Γ(c+1−2Re a)Γ(c)
Γ(c−a)Γ(c− ā) −(c−1)

]
. (2.6)

(v) For a,b > 0, c > a+b+3,

∞∑
n=0

(n+1)3(a)n(b)n
(c)n(1)n

= Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b)

[
(a)3(b)3

(c−3−a−b)3 +
6(a)2(b)2

(c−2−a−b)2 +
7ab

c−1−a−b +1
]
.

(2.7)

(vi) For c >max{0,2Re a+3},
∞∑
n=0

(n+1)3|(a)n|2
(c)n(1)n+1

= Γ(c−2Re a)Γ(c)
Γ(c−a)Γ(c− ā)

[ |(a)3|2
(c−3−2Re a)3

+ 6|(a)2|2
(c−2−2Re a)2

+ 7|a|2
c−1−2Re a

+1
]
.

(2.8)

Our main results rely on the following lemmas:

Lemma 3 [11, Thm. 1]. If
∑∞
n=2n(2n−1)|an| ≤ 1, then the function of the form (1.1)

is in UCV.

Lemma 4. Let the function f(z) be of the form (1.1). Then a sufficient condition for
f to satisfy Re eiη(f (z)/z−β) > 0 in � is

∞∑
n=2

|an| ≤ (1−β)cosη
(
|η|< π

2
,β < 1

)
. (2.9)

The condition (2.9) is also necessary if η= 0, and an < 0 for all n≥ 2.
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Proof. The proof is immediate because

Re eiη
(
f(z)
z

−β
)
= (1−β)cosη+Re


eiη ∞∑

n=2

anzn−1




≥ (1−β)cosη−
∞∑
n=2

|an||z|n−1

≥ (1−β)cosη−
∞∑
n=2

|an| ≥ 0.

(2.10)

The necessary part (with η = 0) follows upon taking z → 1, since an < 0 in this
case.

3. Main results. We begin by proving the following theorem:

Theorem 1. Let a,b ∈ C\{0}, and c > |a|+|b|+2. Then a sufficient condition for
the function zF(a,b;c;z) belong to UCV is that

Γ
(
c−|a|−|b|)Γ(c)

Γ
(
c−|a|)Γ(c−|b|)

[
1+ 2(|a|)2(|b|)2(

c−2−|a|−|b|)2 +
5|ab|

c−|a|−|b|−1

]
≤ 2. (3.1)

Proof. Set f(z)= zF(a,b;c;z). Then, by using Lemma 3, it suffices to show that

T :=
∞∑
n=1

(n+1)(2n+1)
∣∣∣∣ (a)n(b)n(c)n(1)n

∣∣∣∣≤ 1. (3.2)

From the fact that |(a)n| ≤ (|a|)n, we observe that

T ≤
∞∑
n=1

(n+1)(2n+1)
(|a|)n(|b|)n
(c)n(1)n

= 2
∞∑
n=0

(n+1)2
(|a|)n(|b|)n
(c)n(1)n

−
∞∑
n=0

(n+1)
(|a|)n(|b|)n
(c)n(1)n

−1

= Γ
(
c−|a|−|b|)Γ(c)

Γ
(
c−|a|)Γ(c−|b|)

[
1+ 2(|a|)2(|b|)2(

c−2−|a|−|b|)2 +
5|ab|

c−|a|−|b|−1

]
−1,

(3.3)

by (i) and (ii) of Lemma 2. Hence, by the condition (3.1), T is less than 1. This completes
the proof.

If, in the proof of Theorem 1, we start with b = ā, then we have the following theorem
under a weaker condition on c:

Theorem 2. Let a∈ C\{0}, c >max{2+2Re a,0}, and
Γ(c−2Re a)Γ(c)
Γ(c−a)Γ(c− ā)

[
1+ 2|(a)2|2

(c−2−2Re a)2
+ 5|a|2
c−1−2Re a

]
≤ 2. (3.4)

Then zF(a,ā;c;z)∈UCV .

Proof. The proof of this theorem follows in the similar lines of proof of Theorem 1
if we use Lemma 1 and therefore we omit the details.
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Example 1. If we take a=−2 in Theorem 2, then the conditions on c in Theorem 2
become c ≥ ((23+√745)/2). This observation gives the following conclusion: for
c ≥ ((23+√745)/2), the function

zF(−2,−2;c;z)= z+ 4
c
z2+ 2

c(c+1)
z3 (3.5)

is in the class UCV.

In this way one can easily construct a higher order polynomial function lying in the
UCV class.

By using Lemma 4, we obtain

Theorem 3. Suppose that a,b,c and β < 1 are related by any one of the following
conditions:

(i) a,b > 0, c > a+b, and
Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b) −1≤ (1−β)cosη; (3.6)

(ii) −1<a< 0, b > 0, c > b, and

β≤ 1− 1
cosη

[
1− Γ(c−a−b)Γ(c)

Γ(c−a)Γ(c−b)

]
; (3.7)

(iii) a,b ∈ C\{0}, c > |a|+|b|, and
Γ
(
c−|a|−|b|)Γ(c)

Γ
(
c−|a|)Γ(c−|b|) −1≤ (1−β)cosη; (3.8)

(iv) a∈ C\{0}, b = ā, c >max{0,2Re a}, and
Γ(c−2Re a)Γ(c)
Γ(c−a)Γ(c− ā) −1≤ (1−β)cosη. (3.9)

Then we have Re eiη(F(a,b;c;z)−β) > 0 for z ∈�.

Proof. By Lemma 4, it suffices to show that

∞∑
n=1

∣∣∣∣ (a)n(b)n(c)n(1)n

∣∣∣∣≤ (1−β)cosη. (3.10)

First, we recall the well-known formula
(
cf. [9, p. 19, eq. (20)]

)
F(a,b;c;1)= Γ(c−a−b)Γ(c)

Γ(c−a)Γ(c−b)
(
Re(c−a−b) > 0

)
, (3.11)

If a,b > 0 and c > a+b, then from using this formula we have

∞∑
n=1

(a)n(b)n
(c)n(1)n

= Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b) −1. (3.12)

Similarly, if −1<a< 0, b > 0 and c > b then, by Lemma 2 and the formula (3.11), we
obtain that

∞∑
n=1

∣∣∣∣ (a)n(b)n(c)n(1)n

∣∣∣∣= |ab|c
∞∑
n=0

(a+1)n(b+1)n
(c+1)n(1)n+1

= 1− Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b) . (3.13)

Thus under the conditions (3.6) and (3.7), the conclusion follows.
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On applying the ideas of the proofs of Theorems 1 and 2, we can obtain the re-
quired conclusion by assuming the conditions (iii) and (iv), respectively. Therefore we
complete the proof.

Remark 1. From Lemma 4, we observe that the condition (3.7) for η = 0 is neces-
sary and sufficient for Re F(a,b;c;z) > β.

Now, we consider the incomplete Beta function φ(a,c;z) which is defined by

φ(a,c;z) := zF(1,a;c;z)=
∞∑
n=0

(a)n
(c)n

zn+1 (
c ≠ 0,−1,−2, . . . ,z ∈�

)
. (3.14)

Corresponding to the function φ(a,c;z), Carlson and Shaffer [1] defined a linear
operator �(a,c) on � by the convolution [1, p. 738 eq. (2.2)]:

�(a,c)f (z)=φ(a,c;z)∗f(z) (
f ∈�

)
. (3.15)

Clearly,

�(a,c)= Ia,1;c. (3.16)

We note that φ′(a,c;z) = F(a,2;c;z). Therefore if we take b = 2 in Theorem 3, then
by using this observation we have the following corollary:

Corollary 1. Suppose that a, c, and β < 1 are related by any one of the following
conditions:

(i) a> 0, c > a+2, and

(c−1)(c−2)
(c−a−1)(c−a−2)

≤ 1+(1−β)cosη; (3.17)

(ii) −1<a< 0, c > 2, and

β≤ 1− 1
cosη

[
1− (c−1)(c−2)

(c−a−1)(c−a−2)

]
; (3.18)

(iii) a∈ C\{0}, c > |a|+2, and

(c−1)(c−2)(
c−|a|−1

)(
c−|a|−2

) ≤ 1+(1−β)cosη. (3.19)

Then we have Re eiη(φ′(a,c;z)−β) > 0 in �.

Example 2. From (ii) of Corollary 1 we obtain the following sharp result:

Reφ′(a,c;z) >
(c−1)(c−2)

(c−a−1)(c−a−2)
(3.20)

for a∈ (−1,0) and c > 2. This is an improvement of a recent result in [4, Thm. 4].

Next, we establish the following corollary which deals with convolution of functions
having their real parts in the half-plane.

Corollary 2. Let anyone of conditions (i)–(iv) of Theorem 3 be satisfied with η= 0.
Then we have

f ∈ Rη(β1) �⇒ Ia,b;c(f )∈ Rη(β2), (3.21)
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where β2 is given by

1−β2 = 2(1−β1)(1−β) (3.22)

and β is as in Theorem 3.

Proof. Define g(z)= [Ia,b;c(f )](z)= zF(a,b;c;z)∗f(z). Then it is clear that

g′(z)= F(a,b;c;z)∗f ′(z). (3.23)

By hypothesis Re eiη(f ′(z)−β1) > 0 and Re F(a,b;c;z) > β. Therefore, using Lemma
in [5] (see also [10] for the case η= 0), we see that Re eiη(g′(z)−β2) > 0, where β2 is
defined by (3.22). This completes the proof.

By Lemma 3, we obtain

Theorem 4. If a,b ∈ C\{0}, c > |a|+|b|+1 satisfy the condition

2(1−β)cosη
[
Γ
(
c−|a|−|b|)Γ(c)

Γ
(
c−|a|)Γ(c−|b|)

(
2|ab|

c−|a|−|b|−1
+1
)
−1

]
≤ 1, (3.24)

then the operator Ia,b;c(f ) maps Rη(β) into UCV.

Proof. Suppose that the function f(z), defined by (1.1), is in the class Rη(β). Then
by using the standard technique, we can directly get the coefficient estimate

|an| ≤ 2
n
(1−β)cosη (3.25)

(see [6, eq. (4.1)]). Hence, by Lemma 3, it is enough to show that

2(1−β)cosη
∞∑
n=1

(2n−1)
∣∣∣∣ (a)n(bn)(c)n(1)n

∣∣∣∣≤ 1. (3.26)

If we use the hypotheses, this verification is very similar to that of Theorem 3 and
therefore we omit the details.

Corollary 3. Suppose that a ∈ C\{0}, c > max{0,1+ 2Re a}, and satisfies the
condition

2(1−β)cosη
[
Γ(c−2Re a)Γ(c)
Γ(c−a)Γ(c− ā)

(
2|a|2

c−2Re a−1
+1
)
−1
]
≤ 1. (3.27)

Then the operator Ia,ā;c(f ) maps Rη(β) into UCV.

Making use of Lemmas 2 and 3, we obtain the following theorem:

Theorem 5. Let−1<a< 0, b > 0, and c > a+b+1. Then a necessary and sufficient
condition for zF(a,b;c;z) to belong to UCT(α) is that

a+b+1+
[
(1+α)(a+1)(b+1)

c−a−b−2
+3+2α

]
|ab| ≤ c. (3.28)

Proof. We write

f(z)= zF(a,b;c;z)= z+
∞∑
n=2

anzn (3.29)
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so that, by Lemma 3, it suffices to prove that

S :=
∞∑
n=1

(n+1)
[
(1+α)(n+1)−α]|an+1| ≤ 1, (3.30)

where

an+1 = (a)n(b)n(c)n(1)n
. (3.31)

Now

S =
∞∑
n=1

(n+1)
[
(1+α)(n+1)−α]

∣∣∣∣ (a)n(b)n(c)n(1)n

∣∣∣∣

= |ab|
c


{(1+α) ∞∑

n=0

(n+1)
(a+1)n(b+1)n
(c+1)n(1)n

}

+(2+α)
{ ∞∑
n=0

(a+1)n(b+1)n
(c+1)n(1)n

}
+

∞∑
n=0

(a+1)n(b+1)n
(c+1)n(1)n+1


.

(3.32)

Using Lemma 2((i), (iii)), and the formula (3.11), we find that the sum S can be simpli-
fied so that

S = Γ(c−a−b−1)Γ(c)
Γ(c−a)Γ(c−b)

[{
(1+α)(a+1)(b+1)

c−a−b−2
+3+2α

}
|ab|−(c−a−b−1)

]
+1

(3.33)

which, by the condition (3.28), gives S ≤ 1. This completes the proof.
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