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“. . . as Sir Cyril Hinshelwood has observed . . . fluid dynamicists
were divided into hydraulic engineers who observed things that

could not be explained and mathematicians who explained things

that could not be observed.”

James Lighthill

Abstract. This memorial tribute commemorates Sir James Lighthill the man and the
mathematical scientist. A brief biographical information is presented with my personal
reminiscences. His major contributions to fluid mechanics with special reference to non-
linear dispersive waves are discussed. By any standards, his legacy of research and pub-
lications of six books and one hundred fifty papers will remain forever as a remarkable
example of scholarly work.
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1. Brief biographical sketch and career. Sir James Lighthill was born on January
23, 1924 in Paris, France. After a rigorous education at Winchester College with an
outstanding record, he entered the Trinity College, Cambridge in 1941 to pursue a
B.A. degree in Mathematics. He successfully completed his B.A. degree in two years,
and then joined British National Physical Laboratory (NPL) as Junior Scientific Officer at
Aerodynamics Division in 1943, and soon became a Senior Scientific Officer at NPL. Be-
fore he became twenty in 1944, Sir James published his first paper on two-dimensional
supersonic airfoil theory in the Aeronautical Research Committee Report and Memo-
randum (ARCRM). He continued his research at NPL and then published several other
papers on the supersonic theory of airfoil in ARCRM in 1944 and 1945. Because of his
outstanding research work at NPL, he was awarded a prestigious Research Fellowship
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at Trinity College in 1945. After spending a year at his ‘Alma Mater’, Lighthill joined
the University of Manchester as Senior Lecturer in Mathematics at the age of twenty
two. Within a short period of time, he succeeded Sydney Goldstein in the Beyer Pro-
fessor of Applied Mathematics at Manchester at the age of twenty six. This was almost
an extraordinary accomplishment in the United Kingdom in those days. His thirteen
years stay at Manchester was very productive and rewarding in his life in terms of
research, publications and supervision of doctoral students—many of them are now
well known in applied mathematics. Highly respected by his applied mathematics
peers, he was instrumental in organizing a strong research group in fluid mechanics
and applied mathematics in England. Above all, he created an enduring cordial at-
mosphere of mutual support and encouragement for fluid dynamics research at the
highest level.
In 1952, Lighthill was elected Fellow of Royal Society of London at the age of twenty

nine for his pioneering research on sound generated aerodynamically. He was awarded
the Bronze Medal of the Royal Aeronautical Society for his outstanding contributions
to aerodynamics in 1955.
Lighthill left Manchester in 1959 to take the extremely prestigious position of Di-

rector of the Royal Aircraft Establishment (RAE) at Farnborough. His main leadership
role included managing the work of the fourteen hundred scientists and engineers,
and the eight thousand RAE staff. Towards the end of his five year stay at RAE, he
became dissatisfied due to lack of support for applied mathematics from national
agencies. However, even as Director of RAE, he was actively involved in research and
development of aerodynamics of the slender delta wing for aircraft, spacecraft, and
performance of high speed jet aircraft and missiles.
In 1964, Sir James was selected for the position of Royal Society Research Professor

at the Imperial College of Science and Technology at London. In a new and conducive
academic atmosphere at Imperial College, he had the usual responsibility of teaching,
research and guiding many promising young researchers. As his career progressed he
was noted for changing his research from one area to another. At Imperial College, he
delivered three courses of lectures on Nonlinear Waves, Geophysical Fluid Dynamics
and Blood Flow in Arteries during 1965–1967. In addition to his many outstanding pa-
pers and presentations on these topics, he got involved in the development of strong
research in mathematical biofluid dynamics. Under his unique leadership, a new In-
stitute of Mathematics and Its Applications was established in the United Kingdom in
1965, and he became the first President of this newly created institute. During 1963–
1965, he was awarded Royal Society Medal, Gold Medal from the Royal Aeronautical
Society, and Timoshenko Medal from the American Society of Mechanical Engineers
for his outstanding research contributions.
From Imperial College, Lighthill returned to Cambridge in 1969 to succeed Paul Dirac

as the Lucasian Professor of Applied Mathematics. This is probably the most presti-
gious Mathematics Chair in the United Kingdom as this Chair was formerly held by
Sir Issac Newton. Lighthill was justifiably proud to tell people that his predecessor in
the Lucasian Chair was Newton. Within the next two years of his stay in Cambridge,
Queen Elizabeth presented him a Knighthood as Sir James Lighthill. Among his many
other honors were Bakerian Lecture in 1961, the 48th Wilbur Wright Memorial Lecture
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in 1960, Wright Brothers Lectures in the United States in 1962, The Symons Memorial
Lecture in 1969, John von Neumann Lecture in the United States in 1975, American In-
stitute of Aeronautics and Astronautics (AIAA) Aeroacoustics Award in 1976. During
his stay in Cambridge from 1969 to 1979, Sir James vigorously continued his teaching
and research on acoustics, more and more wave propagation, geophysical fluid dy-
namics, biofluid mechanics, ocean and atmospheric dynamics with special reference
to prediction of monsoons and tropical cyclones.
In 1979, Sir James left Cambridge to serve in the position of Provost of the Uni-

versity College London (UCL). Many people were pleased with his appointment and
expressed their feelings by saying that UCL got a Provost who has academic clout,
visibility, and tremendous influence in government, industry and society. Due to his
enormous wisdom and communication skills, and strength of character, he remained
in that administrative position until his formal retirement in 1989. During this pe-
riod, he was heavily involved in new developments of the College, in promotion of
biological and biotechnological research, fund-raising activities, and in significant im-
provement of women’s appointments in senior positions. Even though he was very
busy with administrative duties and responsibilities, Lighthill still maintained his sci-
entific research in areas such as extraction of wave energy, dynamical systems, and
biomechanics of the human auditory system. From my personal conversation with
him and his wife, Nancy in October 1995, I was delighted to know that Sir James made
many significant contributions to the University College London in many different
ways.
While he was Provost, he was very active in the presentation of special lectures and

in research and national educational affairs. His professional activities included ser-
vice as President of the International Union of Theoretical and Applied Mechanics, as
Member of the Advisory Board for the Research Council, 1980–1986, as Member of
Natural Environment Research Council and Chairman of its Oceanography and Fish-
eries Research Committee, 1965–1970, as Member of Geddes Committee of Inquiry
into Shipbuilding Industry, President of the International Commission on Mathemat-
ical Instruction, 1971–1975, and as Member of the Advisory Council on Research and
Development, 1978–1981. As President of ICMI which was then a sub-commission
of the International Mathematical Union (IMU), Lighthill has had a great influence on
mathematics education at the international level. In order to promote mathematics
teaching (Lighthill, 1970) at all levels and to upgrade mathematics education all over
the world, he helped organize a number of symposia that include ‘New topics in appli-
cable mathematics in Secondary Schools’ in Luxembourg in 1973, and ‘Mathematics
and Language’ in Kenya in 1974. His philosophy of mathematics education can be
best described by citing his own quotation from his Presidential address at Exeter in
1973. “Let’s go beyond mere use of the concrete example as an aid to understanding
or of reference to utility as an aid to widening the circle of those in whom interest
is aroused. There is a still more important prize to be won: a prize concerned with a
deeper integration of mathematics into the total education of the individual.
“I want to suggest that educators may have most benefited their pupils when they

have succeeded in giving them a feel for what is involved in the process of applying
mathematics. . . Computers may be of great value in problem-solving, but apparently
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the human brain alone is able to tackle the subtler aspects of creating an effective
correspondence between the mathematical world and the world of experiment and
observation.”
In addition, Sir James delivered many special lectures including the Inaugural

Frederic Constable Lecture in 1980, and the Rayleigh Lecture in the United States in
1989. No doubt, he has made some important contributions to the British higher edu-
cational system and science policy. Among his many degrees, honors and awards, he
received a Gold Medal from the Institute of Mathematics and Its Applications in 1982,
and the Harvey Prize of the Israel Institute of Technology in 1981. He also received
twenty four honorary degrees from many different universities including Princeton,
Brown, and Kiev. In recognition of his notable research contributions to fluid mechan-
ics and applied mathematics, he was elected to twelve learned societies including the
US National Academy of Sciences, Russian Academy of Sciences, and the Indian Na-
tional Science Academy.
After his formal retirement from the University College London in 1989, he was ap-

pointed Emeritus Scientist by the College. He continued his research, publications and
presentations. He accepted the Royal Society Lectureship to deliver the Humphry Davy
Lecture in 1991 and the Inaugural Perkins Memorial Lecture in 1995. In the same year,
Sir James and Lady Nancy visited the University of Central Florida for a week during
October to deliver three lectures on fluid mechanics as part of the Distinguished Lec-
ture Series in Mathematics at UCF. In 1993, he received the ICASE/LARC Theodorsen
Lectureship Award. In November 1996, Sir James and Lady Nancy came to Florida State
University at Tallahassee to attend the International Symposium on Theoretical and
Computational Fluid Mechanics which was organized in honor of Sir James Lighthill
to celebrate his monumental contributions to fluid mechanics, applied mathematics,
and the mathematical community of the world. After the symposium, they returned
to England. Sir James remained at the University College London until his death on
July 17, 1998 after completing a nine-hour swim around the island of Sark against
high tides and strong winds. The 1998 Copley Medal of the Royal Society (the highest
award of the Royal Society) has been awarded posthumously to Sir James.

2. Personal reminiscences. Perhaps it is appropriate to record here my personal
relationship and association with Sir James Lighthill. Before I came to England, I heard
his name as one of the most prominent applied mathematicians, and read his famous
book Introduction to Fourier Analysis and Generalized Functions and some research
papers in order to prepare myself for pursuing research in fluid dynamics at Imperial
College London. After joining the Imperial College as a postgraduate student, I first
came into contact with him in the Fall of 1965. During the next two years of my stay at
Imperial College, I had the rare opportunity of attending his three courses of lectures
on nonlinear waves, geophysical fluid dynamics, and blood flow in arteries. All of his
three courses of lectures were primarily based on his own research notes and research
papers either already published or under preparation at that time in Imperial College.
All of these lectures dealt with remarkably new mathematical and physical ideas, re-
sults and predictions. I thoroughly enjoyed and learned a great deal from his lectures,
and immediately decided to work on linear and nonlinear water waves for my Ph.D.
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dissertation. Subsequently, I wrote my Ph.D. dissertation on Transient Wave Motions
in Fluids and successfully finished my degree. Sir James’ unlimited enthusiasm, great
challenge and interest in teaching and research will remain a lifelong memory with me
and my other classmates at Imperial College. As I had stated earlier, his influence on
me can, in fact, be traced back to my postgraduate days at the University of Calcutta
well before I first met with him at Imperial College.
Probably, it is not out of place to mention my experience in Imperial College and

then at the University of Cambridge. During my stay at Imperial from 1965 to 1967,
I attended many other courses of lectures in both mathematics and mathematical
physics given by many professors. They included Professors J. W. Dungey, W. K. Hay-
man, W. A. Hepner, H. Jones (then Head of Mathematics), F. G. Leppington, D. W. Moore,
S. Rosenblat, Abdus Salam, R. S. Scorer, R. F. Streater, J. T. Stuart, F. W. G. Warren and
Ffowcs Williams. In addition, I went to the University College to attend two courses of
seminars given by Professor K. Stewartson. During my one year stay in Cambridge as
a postdoctoral research fellow, I attended courses of lectures given by Professors P.
M. Dirac, T. Brooke Benjamin, and still I vividly remember Lighthill’s most interesting
and stimulating lectures and his lecture notes prepared for postgraduate students
and faculty members. Also what I do remember is the excitement they generated,
but most importantly his numerous examples of applications intended to deepen our
understanding of the mathematical theory with physical insight. Sir James was an
extremely dynamic and inspiring teacher in the classroom. Indeed, he was my most
favorite teacher in my student days in London and Cambridge.

At the University of Central Florida, October 1995.
Left to right: Sir James Lighthill and Lokenath Debnath.

Based on my research work, I first gave a seminar on Transient Development of
Water Waves at Imperial College in the Spring of 1966. In my talk, I pointed out an
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error in a paper by J. W. Miles on the asymptotic solution of an initial value problem
in water waves, and tried to obtain correct asymptotic solution with right physical
interpretation. The audience at my seminar consisted of many postgraduate students
and faculty members including Professors Lighthill and Scorer. At the end of my
presentation, Professor Scorer raised a doubt in my asymptotic analysis, and then
also in asymptotic methods that I had used to solve the problem. He was almost sure
that the transient component of the asymptotic solution should decay to zero in the
limit as time t→∞ so that the steady state solution can be obtained. In an immediate
response to Scorer’s comments, Professor Lighthill said that Debnath’s claim seemed
to be correct. The transient term obtained by Debnath does not decay to zero in the
limit as t → ∞, possibly due to the Dirac delta function disturbance used as a wave
generating mechanism. Obviously, I was delighted to hear the comments of Professor
Lighthill in support of my claim. At the request of Lighthill, one of his postgraduate
students, M. S. Howe borrowed my research notes and repeated the calculation in or-
der to detect any error in my asymptotic analysis. Fortunately, no error was found.
Mr. Howe and I discussed my research problem with Professor Lighthill. Interestingly
enough, Lighthill was impressed with my work and then gave a nice physical interpre-
tation of my solution.
During my stay at Imperial College, I hadmany opportunities to discuss my research

problems with Sir James Lighthill and other members of his group which included sev-
eral British and Indian scholars including Professor P. L. Bhatnagar, Drs. C. Devanathan
and A. C. Srivastava. I also attended two annual meetings of the British Theoretical
and Applied Mechanics Association at Southampton in 1966 and at Oxford in 1967.
In both of these meetings, Sir James Lighthill was a keynote speaker. I enjoyed his
outstanding lectures on rotating fluids and on nonlinear waves.
As I have indicated before, Sir James was Lucasian Professor of Applied Mathematics

in Cambridge from 1969 to 1979, and then became Provost of the University College
London from 1979 to 1989. During this period of twenty years, I visited Cambridge
for a year and then Oxford for six months to conduct research in applied mathemat-
ics. When I was at the Department of Applied Mathematics and Theoretical Physics
in Cambridge, I again had the opportunity to attend some of his lectures and discuss
research problems with him. During my stay in Oxford in 1980, I went to the Uni-
versity College London to discuss my research problems on nonlinear diffraction of
water waves based on his famous 1979 paper on “Waves and Hydrodynamic Loading.”
Subsequently, I wrote a paper on “A Theory of Nonlinear Waveloading on Offshore
Structures” in 1981, and then a chapter on “Nonlinear Diffraction of Water Waves” for
my book entitled Nonlinear Water Waves published in 1994. Meetings with him, which
I would look forward to with pleasure, were relaxed—even when dealing with difficult
mathematical problems. Despite his very busy schedule, Sir James still was willing to
discuss research problems with his students and colleagues with interest and enthusi-
asm. His kind, warm and dynamic personality was appreciated by students, colleagues,
and friends. He was also noted for his leisure interests in swimming, languages, and
music throughout his life.
During my tenure as Chair of Mathematics at the University of Central Florida, I es-

tablished a Distinguished Lecture Series in 1983. Many Nobel Prize winners, Field Prize
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winners, members of the National Academy of Sciences and Fellows of the Royal So-
ciety participated in this Lecture Series for a period of fourteen years. At my personal
invitation, Sir James Lighthill and Lady Nancy Lighthill visited our department in the
Fall of 1995. During this week long visit at Central Florida, he delivered three lectures
on hurricane dynamics, bacterial biofluid dynamics, and some aspects of aeroacoustic
of extreme-speed jets. As usual, these lectures were loaded with many new, important
and interesting ideas and results, and have stimulated interest in applied mathemat-
ical research. During this visit to Orlando, we had the opportunity to discuss many
issues of mutual interest including research topics, the future of applied mathematics
research, education and training in the UK and in the USA. One day, I escorted both
James and Nancy on a sightseeing tour at Walt Disney World in Orlando and it seemed
to me they enjoyed the tour. However, I enjoyed their company for a week and was
impressed with their high levels of thinking with grace, good humor and friendliness.
We had an ample but great time and this time we became good friends and were free to
discuss many topics of diverse interests including past stories of our stay at London,
Cambridge, and Oxford. In response to one of my questions about publication of the
second edition of his famous and delightful book on Fourier Analysis and Generalized
Functions that was first published in 1958, Lighthill said that forty thousand copies
of this book were sold so far. He has neither plan nor intention of making its second
edition. This short book is a classic in which he developed the theory of Fourier trans-
forms, generalized functions and asymptotic analysis of Fourier transforms accessible
to everyone.

At the University of Central Florida, October 1995.
Left to right: Lokenath Debnath, Sir James Lighthill and Lady Nancy Lighthill

After their return to London, I have had regular correspondences with him. In each of
his many letters written to me, he signed his first name in the end. It is my pleasure to
display one such letter here to record his friendliness and kind invitation to participate
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in the International Symposium organized in honor of Sir James at Tallahassee, Florida
in November 1996. Unfortunately, I missed this unique opportunity of attending this
symposium to pay a special tribute to my favorite professor and friend due to my
prior commitment to visit India as Fulbright Professor from July to December of 1996.
After my return from India, I resumed correspondences with him and was delighted
to see his Collected Works in four volumes edited by Professor M. Yousuff Hussaini
and published by Oxford University Press. My last letter to him was in late June or
early July in 1998 with a special proposal for publishing a book entitled Sir James
Lighthill. Unfortunately, I did not receive any response to this letter, possibly due to
his sudden death in July. I was deeply disturbed by this shocking news of his death.
There is absolutely no doubt that this is a great loss for the entire mathematical as
well as scientific community of the world. Personally, I lost a great teacher, and a great
friend to whom I would remain grateful for his help and encouragement in my life.
Indeed, I was fortunate to come in contact with such a great applied mathematician in
both personal and professional levels. So my desire as well as interest in writing this
memorial tribute commemorating Sir James Lighthill the man and the mathematical
scientist is founded solely on my deep respect and admiration for this great man and
renowned applied mathematician whom I had the opportunity of knowing very well.

3. Significant research contributions. Even a glance at the chronological list of his
research papers and books appended to Collected Papers of Sir James Lighthill (1997)
will show that his whole life was packed with research and publication activities. His
creativity was simply phenomenal, and his deep involvement in teaching, academic
and professional service was enormous, and has many ramifications. I have no inten-
tion of discussing all of his contributions in many areas which include aerodynam-
ics, fluid dynamics, waves in fluids, biofluid mechanics, geophysical fluid dynamics,
boundary layer theory, magnetohydrodynamics, atmospheric and ocean dynamics. In
each of these areas, he made major and unique contributions with new mathematical
results and profound physical significance. His mathematical research always dealt
with vivid imagination that responded to the 1983 quotation of V. I. Arnold: “In every
mathematical investigation, the question will arise whether we can apply our mathe-
matical results to the real world.”
Sir James Lighthill’s research career began at the National Physical Laboratory with

publications in ARCRM during 1943–1945. His pioneering work on sound generated
aerodynamically appeared in the Proceedings of the Royal Society of London in 1952.
This work along with his many other papers on high-speed aerodynamics, how flows
generate sound, and the theory of jet noise are considered as classic, and led to a new
branch of fluid mechanics which is called aeroacoustics, and has immense industrial
and technological importance. Indeed, he is considered as the founder of the modern
theory and applications of aeroacoustics that basically deals with the mutual interac-
tion of sound with fluid flows and turbulence as a source of sound. He was probably
the first applied mathematician who developed the whole of modern aeroacoustics
from unified mathematical and physical viewpoints. In his famous 1952 papers, Sir
James gave an entirely new and novel derivation of a formula for the sound radiation
field in the form
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ρ−ρ0 ∼ 1

4πa20

∫ (xi−yi)(xj−yj)
|x−y|3

i
a20

∂2

∂t2
Tij
(
y, t− |x−y|

a0

)
dy. (3.1)

This is now known as the Lighthill formula that gives an exact estimate for the total
energy radiated and its directional distribution. This led him to formulate a new fourth
power law for the density variations (3.1) which is proportional to the product
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This formula gives a remarkle description of the dependence of the density changes
in the sound radiation field on the fourth power of the Mach number M = (U/a0). He
then derived the sound intensity which is roughly proportional to (a30/ρ0) times the
square of (3.2). In other words, Lighthill proved the formula

I(x)∼ ρ0
(
U8

a50

)(
l
x

)2
. (3.3)

Thus, he established a precise formula for the total acoustic power output which is
roughly proportional to

ρ0U8a−50 l
2. (3.4)

This is the famous Lighthill eighth power law which has had almost simultaneous
experimental confirmation. He then extended his theory of sound generated aerody-
namically by taking into account the statistical properties of turbulent airflows, from
which the sound radiated is called aerodynamic noise. His remarkable physical expla-
nation of the theory of aerodynamic noise generation was simultaneously verified by
several experimental works on both subsonic and supersonic jets. His mathematical
work was so fundamental that it remains today the only practical means for comput-
ing noise in complex flow configurations. So his deep and intricate research on aeroa-
coustics influenced all subsequent work on new aircraft engine designs in the second
half of the twentieth century. In the early nineties, Lighthill delivered many special
lectures on different aspects of the aeroacoustics of high-speed jets by describing a
new dynamical theory of nonlinear propagation of statistically random assemblages
of conical shock waves which are radiated by eddies convected at supersonic speed.
He showed, by both a general theoretical analysis and by computational method, how
their propagation is dominated by a characteristic “bunching process”—a name given
by Lighthill himself. This marked process is associated with a strong tendency of
early local unions of shock waves that act to stimulate further unions with neighbor-
ing shock waves. His completely general theoretical study led to the demonstration
of the universal tendency towards bunching process.
In his 1956 famous paper “On Viscosity Effects in Sound Waves of Finite Amplitude”

written in honor of the seventieth birthday of Sir G. I. Taylor, Lighthill initiated the
theory of nonlinear acoustics. As a follow-up of this work, he developed mathematical
theory of gas dynamics interacting with gas physics. He then published two major
papers “Dynamics of a Dissociating Gas, Part 1” and “Equilibrium Flow, Part 2, Quasi-
equilibrium Transfer Theory” in the Journal of Fluid Mechanics in 1957. His dealt with
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predictions on the velocity field originated from acoustic noise and a generalized
turbulence in a layer overlaying a convectively unstable atmospheric region.
In the area of linear and nonlinear waves in fluids, Lighthill made many significant

contributions during 1954–1989. I have been familiar with almost all of his contribu-
tions to many different problems of generation and propagation of waves in fluids.
In collaboration with T. B. Benjamin, Lighthill’s first important work on cnoidal waves
and bores was published in the Proceedings of the Royal Society, London in 1954. He
also published two joint papers (1955) with G. B. Whitham, “On Kinematic Waves, I
and II” which deal with a new class of waves different from the classical dynamic wave
motions described by Newton’s second law of motion. They developed the theory and
applications of kinematic waves to several real-world problems which include flood
waves in rivers, glacier flow, chromatographic models, and traffic flows on highways.
This work has had widespread applications to other areas of physics and chemistry.
In 1962, Lighthill wrote another major paper on “Physical Interpretation of the Mathe-
matical Theory of Wave Generation by Wind.” He predicted that travelling water waves
in a wind produce, to a first approximation, airflow undulations with pressures min-
imum over crests and maximum over troughs. He also described the physical mech-
anism of energy transfer from wind to water waves. The rate of this energy transfer
varies as the square of the wave amplitude, and therefore, as the wave energy itself
which grows exponentially.
In 1960, Sir James Lighthill’s deep and profound paper provided an elegant mathe-

matical theory with physical interpretation of magnetohydrodynamic waves and other
anisotropic wave motions. He developed a new method for finding the asymptotic be-
havior at large distances (as r →∞) of the solution of an equation of the form

P
(
∂2

∂t2
,
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
u= eiωtf (r), (3.5)

where P is a polynomial in partial derivatives, r= (x,y,z) and f(r) is a function with
a compact support in R3.
Using the three-dimensional Fourier transform with respect to space variables x, y ,

and z, he solved equation (3.5) in the form

u= eiωt
∫∞
−∞

∫∞
−∞

∫∞
−∞
exp

[
i(κκκ ·r)]U(κκκ)dκκκ, (3.6)

where U = F/G, F(κκκ)=�{f(r)}, and

G(κκκ)= P(−ω2,−k2,−l2,−m2), (3.7)

and κκκ = (k,l,m). He then obtained the unique solution of physical interest by dif-
ferent ways of applying the Sommerfeld radiation condition. He also expressed the
asymptotic behavior of (3.6) as r →∞ in terms of the singularities of the integrand.
Finally, he solved a more general initial value problem of a more general equation of
the form

P
(
∂2

∂t2
,
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
u= f(r, t). (3.8)
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Application of the four-dimensional Fourier transform with respect to three space
variables and time t gives the solution in the form

u(r, t)=
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞
exp

[
i(κκκ ·r+ωt)] F(κκκ,ω)

G(κκκ,ω)
dκκκdω. (3.9)

Thus, he obtained a solution for u which is zero for t < 0, and there is no complex
roots ofω for which G = 0 with real k, l, andm. Consequently, the resulting solution
becomes

u(r, t)=
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫ −iε+∞
−iε−∞

exp
[
i(κκκ ·r+ωt)] F

G
dκκκdω. (3.10)

Then the asymptotic representation of (3.10) is obtained as r →∞ and t→∞ simul-
taneously.
In his 1964 inaugural lecture as the first President of the Institute of Mathematics

and Its Applications, Sir James discussed a wide range of different aspects of the
theory of group velocity. In this paper, he obtained a new formula of the theory of
group velocity in three dimensions. He also developed the method of stationary phase
in three dimensions for a problem of forced wave motion due to a steady source of
fixed frequencyω0 with a compact support. His inaugural lecture on “Group Velocity”
published in the Journal of the Institute of Mathematics and Its Applications in 1965 is
concerned with an elaborate review of the linear theory of dispersive wave phenomena
based on either themethod of superposition of plane wave solutions or the kinematics
of surfaces of constant phase. His general analysis led him to unexpected formulas for
energy flux in plane periodic waves in a very general nonlinear conservative dynamical
system. These are given in terms of the averaged Lagrangian density �, expressed as
a function of the frequencyω and wavenumber k. He found the energy flux as −ω�k,
and the energy density asω�ω−�. Their ratio representing the group velocity can be
expressed as (dω/dk) for changes keeping constant the measure of wave amplitude
(�/ω). He then extended the linear wave theory in another deep and profound paper
entitled “On Waves Generated in Dispersive Systems to Travelling Forcing Effects with
Applications to the Dynamics of Rotating Fluids” published in JFM in 1967. His general
problem of the propagation of dispersive waves generated by travelling forcing effects,
that may be steady, oscillatory or transient in nature, is governed by a linear partial
differential equation

P
(
i
∂
∂t
,−i ∂
∂x
,−i ∂
∂y
,−i ∂
∂z

)
φ= e−iω0tf (r−Ut), (3.11)

where P is a polynomial, φ(x,y,z,t) is the disturbance, and the forcing term f van-
ishes outside a finite region around the origin. Using the three dimensional Fourier
transform with respect to x, y , and z, he obtained the general formal solution

φ(r, t)=
∫∞
−∞

∫∞
−∞

∫∞
−∞
F(κκκ)exp

[
i{−ω0t+κκκ ·(r−Ut)}

]
P(ω0+U·κκκ, κκκ) dκκκ (3.12)

where κκκ = (k,l,m) is the wavenumber vector, and F(κκκ) is the Fourier transform of
f(r). He then used his own asymptotic method (1960) of evaluation of integrals such
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as (3.12) at distances from the forcing region large compared with the dimension.
The asymptotic value of (3.12), as defined by replacing ω0 by ω0+ iε in (3.12) and
making ε→ 0 is determined. In the wavenumber space κκκ = (k,l,m), at each point of
the surface

P(ω0+U·κκκ, κκκ)= 0 (3.13)

on which the denominator of (3.12) vanishes, an arrow is drawn normal to the surface,
selecting from the two normal directions the one pointing towards the surface P(ω0+
U ·κκκ+δ, κκκ) = 0, where δ is small and positive. Then, waves are determined in any
particular direction stretching out from the forcing region with their amplitude given
asymptotically by the formula

4π2

|K| 12R
· F(κκκ)
|∇κκκP(ω0+U·κκκ, κκκ)| , (3.14)

where R = |r−Ut| represents distance from the forcing region, and K is the Gaussian
curvature (product of principal curvatures) of the wavenumber surface (3.13). The
waves whose frequency is ω0 relative to a forcing region moving at velocity U must
have absolute frequency ω0+U·κκκ (the Dopper effect), and hence their wavenumber
vector must lie on the surface (3.13). Moreover, the group velocity for waves satisfying
the dispersion relation P(ω,κκκ)= 0 is given by(

∂ω
∂k
,
∂ω
∂l
,
∂ω
∂m

)
=− ∇P
∂P/∂ω

. (3.15)

Whenω0 = 0, the equation of the surface (3.13) becomes P(U·κκκ, κκκ)= 0 which may be
interpreted as a statement that a steady forcing effect can generate only waves whose
crests are stationary relative to the velocity of the forcing region.
His mathematical theory as well as physical significance of this paper is so general

that he employed his theory to study
(i) Rossby waves in a β-plane ocean due to travelling steady or travelling transient
disturbances,

(ii) the classical Kelvin ship wave problem (ω0 = 0),
(iii) internal gravity waves in a stratified fluid due to a vertically moving steady

disturbance, and
(iv) Taylor columns generated in a body of uniformly rotating fluid.

The predicted shape of gravity waves generated in a uniformly stratified fluid is in
excellent agreement with experimental findings of Mowbray (1966). In summary, his
1967 remarkable paper led to a unified approach to many types of dispersive waves
that can be excited in a non-rotating, rotating and/or stratified fluid including the
atmosphere and the oceans.
We next turn our attention to Lighthill’s deep and significant contributions to the

theory of nonlinear dispersive waves. His work in this area witnessed the statement
of Werner Heisenberg: “ . . . the progress of physics will to a large extent depend on
the progress of nonlinear mathematics, of methods to solve nonlinear equations . . .
and therefore we can learn by comparing different nonlinear problems.”
During his stay at Imperial College, Sir James first published his first paper enti-

tled “Contributions to the Theory of Waves in Nonlinear Dispersive Systems” in the
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Journal of the Institute of Mathematics and Its Applications in 1965. He not only began
to work on nonlinear wave propagation, but also he provided outstanding leadership
in organizing the first “Discussion Meeting on Nonlinear Theory of Wave Propagation
in Dispersive Systems” in May 1966. It is a delight to read his Introductory Remarks
at this meeting: “ . . . a relatively new area of study of the mechanics of waves, an
area in which most of the work has been done during the past six years. This work,
on dispersive systems, represents the second phase of development of the nonlinear
mechanics of waves.” As expected, this meeting came to an end with an enormous
success. In his Closing Remarks, Sir James states: “ . . . Methods apparently of diverse
character for analysing the nonlinear development of dispersive waves have been
described.” Perhaps the most interesting statement in his Closing remarks was:
“ . . . Not only those working in the field, but also those still to be attracted into it
by all its interesting potentialities, will find the present compendium of knowledge
on the subject uniquely valuable.” It is my pleasure to record here his influence on
my own research on this new subject and on my direct involvement in organizing two
NSF-CBMS research conferences on nonlinear waves in 1982 and 1992 in the United
States. Influenced by Lighthill’s own Closing remarks: “This has been a most inter-
esting discussion to attend, and will, I believe, in its written version, be a work of
marked permanent value . . . ,” I have had the opportunity to publish, as a follow up
of the NSF-CBMS Conferences, four edited volumes (1983–1984, 1992) on the theory
and applications of nonlinear dispersive wave phenomena.
Sir James also wrote a deep and comprehensive paper entitled “Some special cases

treated by the Whitham theory” published in the Special Volume A299 (1967) of the
Proceedings of the Royal Society. In his two famous papers (1965, 1967), Lighthill
developed a general theory of nonlinear dispersive waves in conservative systems
under conditions when the proportional change in amplitude or wavenumber over a
distance of one wavelength is very small. For any dynamical system in this restricted
class, a periodic waveformu=φ(θ), where θ =ωt−kx, of a given wavenumber k and
amplitude a has a given frequencyω=ω(k,a) which may be referred to as nonlinear
dispersion relation. When k and a are known, the average Lagrangian �(ω,k,a) per
unit length can be derived. Then it is possible to eliminate amplitude a from the
expression for � and the nonlinear dispersion relation so that � can be treated as a
function of ω and k in the form

�(ω,k)= 1
2π

∫ 2π
0
L
(
φ,φt,φx

)
dθ, (3.16)

where L is the Lagrangian of the system.
For a slowly varying wavetrain, the wave field can be described by a phase function
θ(x,t)which is a smoothly varying function and assumes successive integral multiple
values of 2π on successive wave crests and is now known as the Whitham equation.
In terms of θ, the local frequency and local wavenumber are defined by

ω=−θt and k= θx. (3.17)

With the prescribed phase function θ, Lighthill employed the Whitham averaged
variational principle
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δ
∫ t
t1

∫ x2
x1

�
(−θt, θx)dxdt = 0. (3.18)

This leads to the celebrated Euler equation

∂
∂t

(
∂�
∂ω

)
− ∂
∂x

(
∂�
∂k

)
= 0. (3.19)

This is now known as the Whitham fundamental equation for nonlinear dispersion.
As pointed out by Whitham (1974), (3.19) is the conservation equation representing
the balance between changes in the time-like adiabatic invariant �ω and the space-
like adiabatic invariant �k. Other conservation equations can be derived from (3.18)
by applying Noether’s Theorem. In particular, the invariance of � with respect to
arbitrary time and space translations lead respectively to the energy equations:

∂
∂t
(ω�ω−�)− ∂

∂x
(
ω�k

)= 0, (3.20)

and the momentum equation

∂
∂t
(
k�ω

)+ ∂
∂x

(
�I−k�k

)= 0, (3.21)

where the expression �I−k�k is a matrix representing momentum flux.
The definition (3.17) gives another conservation equation

∂ω
∂x

+ ∂k
∂t
= 0, (3.22)

which represents the conservation of wave crests.
Lighthill showed that equation (3.19) can be expressed by means of (3.17) in terms

of the phase function θ as a second-order quasi-linear partial differential equation
for θ

�ωωθtt−2�ωkθtx+�kkθxx = 0, (3.23)

where all subscripts represent partial derivatives. By an appropriate Legendre trans-
formation, he transformed (3.23) into a linear equation for a new dependent variable
φ(x,t)= kx−ωt−θ, φω =−t and φk = x so that φ(x,t) satisfies the equation

�ωωφkk−2�ωkφωk+�kkφωω = 0. (3.24)

According to the method of characteristics (see Debnath 1967), the characteristics
of equation (3.23) represent two distinct families of curves, and satisfy the equation

�ωω(dω)2+2�ωkdωdk+�kk(dk)2 = 0. (3.25)

In both of his papers (1965, 1967), Lighthill discussed various aspects of theWhitham
theory and established the criterion governing whether dispersion equation (3.19) is
hyperbolic or elliptic. He showed that equation (3.25) is hyperbolic or elliptic at a
point (ω,k) if the surface � = �(ω,k) is synclastic or anticlastic. A line separating
a synclastic from an anticlastic part of the surface is a transition line on which the
equation is parabolic.
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Lighthill obtained the solution of (3.23) as a linear supposition of solutions propor-
tional to exp[i(σt−κx)], where κ is a root of the quadratic equation

(
�kk

)
0κ
2+2(�ωk)0κσ +(�ωω)0σ 2 = 0. (3.26)

For the case of deepwater waves, his direct calculation reveals that roots of (3.26) are
real or complex according to whether the finite amplitude a > 0.054λ or a < 0.054λ.
If the roots are complex, the solution of (3.23) can be given by

θ = θ0+ε
(
sinhγx
γ

)
exp

[
iσ
(
t− x
c0

)]
, (3.27)

where θ = (k0x−ω0t) is the undisturbed value of θ, and γ is the rate of exponential
growth of modulation with distance given by

γ = σ
[
(�ωω)0(�kk)0−

(
�2ωk

)
0

]1/2
(�kk)0

, (3.28)

and c0 is the velocity of propagation (group velocity) of the amplitude modulation
given by

c0 =−
(
�kk

)
0(

�ωk
)
0
. (3.29)

When roots of (3.26) are complex, γ is real, and hence the amplitude containing the
sinh function suggests that the pure gravity waves on deep water become unstable in
the sense that slow modulation grows exponentially as the wave propagate in the far
field (x→∞).
On the other hand, if γ is imaginary, the solution (3.27) is still valid but the inter-

pretation would be entirely different. In contrast to the elliptic case, no exponential
growth will occur, but the modulation will propagate at two different velocities c1 and
c2 given by

σ
c1
= σ
c0
−|γ|, σ

c2
= σ
c0
+|γ|. (3.30)

This is the remarkable splitting of the group velocity in the hyperbolic case that was
first predicted by Whitham (1967).
The upshot of Lighthill’s deep analysis is that, under certain conditions, very grad-

ual variations in the properties of a wavetrain are governed by the elliptic or hy-
perbolic equations. In the elliptic case, solutions representing the amplitude and the
wavenumber for nonlinear dispersive waves definitely become unstable. The most
striking feature of the Lighthill theory is that there is a development of wave group
whose amplitude distribution is symmetrical about itsmaximum. This feature is found
to remain true at later times, but energy is redistributed within the group so that the
maximum amplitude increases with development of a cusp at the center of the group
when the wavenumber exhibits a singularity. Moreover, such a singularity occurs after
a finite time for a wide class of elliptic initial value problems. Lighthill’s theoretical
predictions were found in excellent agreement with the theory and the conclusive
experimental findings of Benjamin and Feir [22, 23, 24].
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At Imperial College, Lighthill worked extensively on geophysical fluid dynamics and
biofluid dynamics. In 1969, he published his work on “Dynamic Response of the Indian
Ocean to Onset of the Southwest Monsoon.” Remarkably, his linearized theory of un-
steady wind-driven currents in a horizontally stratified ocean with applications to the
northern part of the Indian Ocean was fairly general so that it can be applied to other
oceanic models. He also discussed barotropic response, baroclinic wave propagation,
and baroclinic response to monsoon onset in an equatorial ocean in some detail. Sub-
sequently, he wrote a few articles on monsoon dynamics and made several presenta-
tions on hurricane dynamics and tropical cyclones. From his extensive study and re-
search in flood waves, monsoon dynamics, and hurricane dynamics, Lighthill became
seriously interested in all kinds of natural hazards that include floods, hurricanes,
cyclones, tornadoes, earthquakes, thunderstorms, underwater explosions, landslides,
and volcanic eruptions. These hazards are the most common and frequently observed
to have catastrophic effects on life, economic, coastal and marine resources. During
the last three decades, Sir James showed a tremendous increase in interest in the dy-
namics of oceans and atmosphere with special reference to waves and currents caused
by hurricanes, tropical cyclones, underwater explosions and earthquakes. He became
more and more involved in developing protective measures to save life, economic,
coastal and marine resources from natural hazards. During the last several years of
his life, he served as Chairman of the Special Committee on the International Decade
for Natural Disaster Reduction of the International Council of Scientific Unions, and
traveled and lectured world-wide. His deep concern and active interest in reduction of
all natural hazards and of wasteful use of energy reveal the unique character of this
man.
Both the design of wave-energy extraction by submerged resonant ducts and the

diffraction of water waves by offshore solid structures are of considerable interest
in ocean engineering and naval hydrodynamics. Lighthill’s 1979 paper entitled “Two-
dimensional analysis related to wave-energy extraction by submerged resonant ducts”
published in JFM represents his major interest in ocean engineering. This work has
many important practical applications for the design of wave-energy extraction de-
vices consistent with the need formaximum seaworthiness. Based on two-dimensional
wave hydrodynamics and linearized duct dynamics, he developed both local models of
forcing-pressuremodification, and fully interactivemodels. His study led to inferences
of many aspects of the duct’s response to incident waves including forcing-pressure
modification, added mass, and energy absorption, transmission and reflextion.
The study of wave forces on offshore structures or natural boundaries has become

more important due to the tremendous growth and need for ocean exploration and
extraction of wave energy from oceans. Methods of calculating wave forces on off-
shore structures and/or harbors based upon Morison’s (1950) equation seemed to be
useful for construction of such structures that have been widely used for exploration
of oil and gas from the ocean floor. However, several difficulties in using it in the
design and construction of offshore structures have been reported in the literature.
In 1979, Lighthill was invited to deliver a keynote address at the Behavior of Offshore
Structures Symposium at Cranfield, England. The title of his keynote address was
“Waves and Hydrodynamic Loading.” He gave a detailed survey of his title and then
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presented a mathematical analysis of estimating all linear and nonlinear wave forces
acting on a very large solid structure of size b comparable with the wavelength λ,
where λ = (2π/k). His profound analysis reveals that the nonlinear contributions to
the wave loading on offshore structures are made up of the quadratic, dynamic and
waterline forces associated with the irrotational flow component of the wave loading.
He then suggested a new nonlinear modification of the classical Morison’s equation
(6.2.5) (see Debnath, 1994) with the nonlinear contribution given by

Fnl = Fq+Fd+Fw, (3.31)

where Fq, Fd, and Fw are defined by (6.5.13), (6.5.14) and (6.5.16) respectively (see
Debnath (1994) p. 294). The second-order correction to the Morison equation for a
vertical cylinder is given by

(
Fd+Fw

)= 5
2 (ak)gρaπb

2 sinωt cosωt. (3.32)

The significance of the nonlinear correction term (3.32) is that it gives an enhanced
positive peak of the total drag force, occurring when cosωt and sinωt are both pos-
itive. The importance of the correction term increases with the wave steepness (ak).
The modified Morison equation (6.2.5) for the case of a vertical cylinder is given by

D = 2gρaπb2 cosωt+ 1
2CDgρa(ab)sinωt|cosωt|. (3.33)

Finally, the quadratic wave force Fq can be expressed in the form

Fq = 2πgρab2(kb)2(ak)
[
4
(
log
C
kb

)
− 3
4

]
sin2ωt, (3.34)

where (kb)� 1. Thus, the quadratic force is insignificant in the limit of very small
(kb) and begins to exert its influence as kb increases. The upshot of Lighthill’s anal-
ysis is that the nonlinear correction is dominated by the sum (3.32) of the dynamic
and waterline forces. In the diffraction regime, the quadratic force contributes to the
magnitude of those other forces as kb increases. This nonlinear analysis of Lighthill
has subsequently extended to the case of fluid of finite depth by several authors in-
cluding Debnath and Rahman (1981). As a follow-up of his work, Sir James published
another paper on “Fundamentals concerning wave loading on offshore structures” in
JFM in 1986. This paper was aimed at relating a certain substantial body of established
knowledge concerning wave loading on offshore structures to fundamental principles
of mechanics of solids and of fluids. In fact, he described some current techniques
for calculating wave loading on offshore structures from the standpoint of the funda-
mental mechanics of solids and fluids.
Sir James began his study and research in biofluid dynamics at Imperial College and

continued to work on this subject until his death. I am not fully familiar with all his
research papers in this subject, and so, I do not intend to discuss his contributions in
this area. However, I find it necessary to mention some of his groundbreaking work
on both external biofluid dynamics, the analysis of mechanisms of swimming and fly-
ing, and internal biofluid dynamics. The whole volume IV of Collected Papers of Sir
James contains all of his fifteen papers on external biofluid dynamics, and five arti-
cles on internal biofluid dynamics. The former is concerned with animal locomotion
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through surrounding fluid media (water and air), as animal’s flight in air or animal’s
swimming through water, while the latter deals with fluid motions within an animal
as in the study of circulation and respiration. However, these two halves of biofluid
dynamics have in common one general feature that distinguishes them from the rest
of fluid dynamics: fluidmovements are energized by the working of an animal’s motile
external or internal surfaces, parts of which are highly flexible. Another shared fea-
ture of the two areas is their common demand for interdisciplinary study. His major
contributions to external biofluid dynamics extend from the first elucidation of the
basic mechanisms of aquatic animal propulsion to ciliary and flagellar propulsion, and
to animal flight in birds, bats and insects. As a lifelong devotee of fluid mechanics,
Lighthill created not only a newmajor division of biofluid dynamics, but also he raised
the subject to a new higher level through his groundbreaking work on both external
and internal biofluid dynamics. On one hand, Sir James wrote major papers on aquatic
animal locomotion and its hydrodynamics; on the other hand, he published articles
on application of hydrodynamical slender-body theory to fish swimming movements.
His two papers entitled “Large-amplitude Elongated-body Theory of Fish Locomotion,”
and “Mathematical Theories of Fish Swimming” represent major contributions to the
hydrodynamic interaction between a swimming fish and the water. Even after his re-
tirement, Lighthill continued his research on fish swimming and published a series
of papers (1990) on “Balistiform and Gymnotiform Locomotion.” More recently, he
made fascinating analysis of how a herring can control the motion of its head to en-
able it to sense pressure differences across the head. He formulated the fundamental
features of what has become the standard model of fish swimming. His first book on
Mathematical Biofluiddynamics published by SIAM in 1975 covers a fuller account of
both external and internal biofluid dynamics. His 1975 John von Neumann Lecture
on Flagellar Hydrodynamics represents his significant work in mathematical biofluid
dynamics of microorganisms with flagella and related organisms. He also developed
mathematical methods required for the study of flagellar hydrodynamics. In particu-
lar, for flagellar locomotion, he developed a new viscous slender body theory which
is superior to the classical dissipative force theory where Lighthill replaced a nar-
row long cylindrical flalgellum beating with a large wavelength by a distribution of
Stokeslets and dipoles at its center-line whose strengths are calculated by means of
integral equation representing the no-slip criterion on the cylindrical surface.
Lighthill also initiated a new field of internal biofluid dynamics and published sev-

eral papers including two major papers on “Energy Flow in the Cochlea,” and “Acous-
tic Streaming in the Ear Itself.” The latter paper deals with biomechanics of cochlear
traveling waves and with estimation of the magnitude of any mean streaming motions
excited by acoustic signals after conversion into cochlear traveling waves. In particu-
lar, he demonstrated that the ability of the hair cells of the cochlea to sense different
frequencies of sound according to their distance from the entrance could be related
to a phenomenon of critical layer absorption of the elasto-acoustic waves generated
in that organ.
In his famous paper on “The Recently Recognized Failure of Predictability in Newto-

nian Dynamics” which appeared in the Proceedings of the Royal Society of London in
1986, Sir James Lighthill vigorously argued against the belief that dynamical systems
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governed by Newton’s laws of motion do not necessarily exhibit the predictability
property. As a firm believer of Newtonian dynamics, Sir James’ statement of public
apology is an enlightenment to read: “Here I have to pause, and to speak once again on
behalf of the broad global fraternity of practitioners of mechanics. We are all deeply
conscious today that the enthusiasm of our forebears for the marvelous achievements
of Newtonian mechanics led them to make generalizations in this area of predictabil-
ity which, indeed, we may have generally tended to believe before 1960, but which we
now recognize were false. We collectively wish to apologize for having misled the gen-
eral educated public by spreading ideas about the determinism of systems satisfying
Newton’s laws of motion that, after 1960, were to be proved incorrect. In this lecture,
I am trying to make belated amends by explaining both the very different picture that
we now discern, and the reasons for it having been uncovered so late.”
In another place of the same paper, he conclusively established the fact that: “My

lecture, however, was about the mathematical properties of systems assumed to obey
exactly the laws of Newtonian dynamics. The behaviour of such systems had long been
thought to be completely predictable but is now known, for a certain proportion of
such systems, to be ‘chaotic’ in a well defined sense.
There is nothing ‘inexplicable’ about this chaotic behaviour, a behaviour which (in

fact) the mathematical analysis has fully explained, demonstrated and characterized.
These mathematical theorems proved about the precise consequences of assuming
Newtonian dynamical laws have the same immutability as all the 2000 year-old geo-
metrical theorems about the consequences of assuming Euclid’s axioms.”
A thorough appreciation of Newton’s great achievement was shown by Sir James

in his following comments: “I feel fully justified, therefore, in repeating that systems
subject to the laws of Newtonian dynamics include a substantial proportion of sys-
tems that are chaotic; and that, for these latter systems, there is no predictability
beyond a finite predictability horizon. We are able to come to this conclusion without
ever having to mention quantum mechanics or Heisenberg’s uncertainty principle. A
fundamental uncertainty about the future is there, indeed, even on the supposedly
solid basis of the good old laws of motion of Newton, which effectively are the laws
of motion satisfied by all macroscopic systems.”

4. Concluding remarks. It is hoped that enough has been discussed to give some
definite impression of Sir James Lighthill’s professional life and career as well as of
the range, power and depth of his great applied mathematical work in different areas
of modern fluid dynamics. Sir James’ whole career was totally dedicated to the pur-
suit of fundamental scientific discovery and dissemination of knowledge of diverse
areas of fluid mechanics and applied mathematics. He was one of the most brilliant
and influential fluid dynamists of this century. His research and publications have
stimulated enormous interest among researchers in the academic as well as indus-
trial community for further exploration and development of challenging problems
in the fields of aerodynamics, aeroacoustics, waves in fluids, boundary layer theory,
biofluid dynamics, atmospheric and ocean sciences. As a lifelong devotee of fluid dy-
namics, he expressed his genuine excitement for the subject in his 1962 lecture at
the Fluid Dynamics Division of the American Physical Society by declaring: “It needs
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categorically to be reaffirmed that the continuummechanics of a fluid innocent of elec-
tric field has as vital and exciting present and future as any other branch of physical
science.” As editor of Collected Papers of Sir James Lighthill, M. Yousuff Hussaini states
the following in his General Introduction: “For more than half a century, his contribu-
tions spanned the fields of aeronautics, astrophysics, atmospheric and oceanographic
sciences, and biofluid dynamics. But Lighthill is distinguished not just by the diver-
sity and excellence of his technical contributions; his unique vision and perspicacity
are evident in the groundbreaking, original work in every field he touched. In certain
areas of aerodynamics and biofluid dynamics—such as wave propagation, aeroacous-
tics, and animal motion—his first articles were seminal and remain virtually the last
word on the subject.”
Sir James Lighthill was undoubtedly one of the most brilliant and influential fluid

dynamists of the twentieth century. He revolutionized applied mathematics with his
remarkable contributions to modern fluid dynamics. There is no doubt at all about
Lighthill’s profound and everlasting impact on mathematical sciences and the scien-
tific community of the world. His lifelong concern for quality mathematics instruction
at national and international levels, and for inevitable loss by natural hazards reveals
the unique character of this man. He will be remembered forever not only for his
great scientific achievements, but also his unique contribution to the welfare of the
human race. In many ways, Sir James was the epitome of the applied mathematical
community.
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