RECAPTURING SEMIGROUP COMPACTIFICATIONS OF A GROUP FROM THOSE OF ITS CLOSED NORMAL SUBGROUPS

M. R. MIRI and M. A. POURABDOLLAH

(Received 8 January 1998 and in revised form 20 June 1998)

Abstract. We know that if S is a subsemigroup of a semitopological semigroup T, and \mathcal{F} stands for one of the spaces $\mathcal{A}, \mathcal{W}, \mathcal{A}, \mathcal{I}, \mathcal{D}$ or \mathcal{L}, and (ϵ, T^ω) denotes the canonical \mathcal{F}-compactification of T, where T has the property that $\mathcal{F}(S) = \mathcal{F}(T)|_S$, then $(\epsilon|_S, \epsilon(S))$ is an \mathcal{F}-compactification of S. In this paper, we try to show the converse of this problem when T is a locally compact group and S is a closed normal subgroup of T. In this way we construct various semigroup compactifications of T from the same type compactifications of S.

Keywords and phrases. Semigroup (\mathcal{P}-) compactification, conjugation invariance.

2000 Mathematics Subject Classification. 43A60.

1. Introduction. For notation and terminology we follow Berglund et al. [2], as much as possible. Thus a topological semigroup is a semigroup S that is a Hausdorff topological space, the multiplication $(s, t) \rightarrow st : S \times S \rightarrow S$ being continuous. S is called a semitopological semigroup if the multiplication is separately continuous, i.e., the maps $\lambda_s : t \rightarrow st$ and $\rho_s : t \rightarrow ts$ from S into S are continuous for each $s \in S$. For S to be right topological only, the maps ρ_s are required to be continuous. Let G denote a locally compact group, and N is a closed normal subgroup of G. A semigroup compactification of G is a pair (φ, X), where X is a compact right topological semigroup with identity 1, and $\varphi : G \rightarrow X$ is a continuous homomorphism with $\varphi(G) = X$, and $\varphi(G) \subset \Lambda(X) = \{x \in X \mid \lambda_x : X \rightarrow X \text{ is continuous}\}; \Lambda(X)$ is called the topological center of X. When there is no risk of confusion we often refer to (φ, X), or even to X, as a compactification of G.

A homomorphism from a compactification (ψ, X) of S to a compactification (φ, Y) of S is a continuous function $\theta : X \rightarrow Y$ such that $\theta \circ \psi = \varphi$. Then, Y is called a factor of X, and X is an extension of Y. A compactification with a given property P (such as that of being a semitopological semigroup or a topological group) is called a P-compactification. A universal P-compactification of S is a P-compactification which is an extension of every P-compactification of S (see [1, 2, 3]).

The C^*-algebra of all bounded continuous complex-valued functions on G is denoted by $C^*(G)$ with left and right translation operators, L_s and R_s, defined for all $s \in G$ by $L_s f = f \circ \lambda_s$ and $R_s f = f \circ \rho_s$. If \mathcal{A} is a C^*-subalgebra of $C^*(G)$ containing the constant functions, we denote by $G^\mathcal{A}$ the spectrum of \mathcal{A} furnished with Gelfand topology (i.e., the weak* topology induced from \mathcal{A}^*); the natural map $\epsilon : G \rightarrow G^\mathcal{A}$ is defined by $\epsilon(s)f = f(s)$. When \mathcal{A} is left translation invariant (i.e., $L_s f \in \mathcal{A}$ for all $s \in G$ and $f \in \mathcal{A}$) we can define an action of G on $G^\mathcal{A}$ by $(s, \nu) \rightarrow \epsilon(s) \nu$, where $(\epsilon(s) \nu)(f) = \nu(L_s f)$. Right
translation invariance and \(\nu \epsilon(s) \) are analogously defined (see [5, 7]).

A left translation invariant \(C^* \)-subalgebra of \(\mathcal{C}(G) \) containing the constant functions is called left \(m \)-introverted if the function \(s \to (yf)(s) = \nu(L_s f) \) is in \(\mathcal{A} \) for all \(f \in \mathcal{A} \) and \(\nu \in G^\mathcal{A} \); in this situation the product of \(\mu, \nu \in G^\mathcal{A} \) can be defined by \((\mu \nu)(f) = \mu(\nu f) \). This makes \((\epsilon, G^\mathcal{A}) \) a semigroup compactification of \(G \). The spaces of almost periodic, weakly almost periodic, left continuous and distal functions, which are denoted by \(\mathcal{A}_\mathcal{P}, \mathcal{W}_\mathcal{A}_\mathcal{P}, \mathcal{L}_\mathcal{P}, \mathcal{A}_\mathcal{P} \), respectively, are left \(m \)-introverted. We refer the reader to [2, 5] for the one-to-one correspondence between compactifications of \(G \) and left \(m \)-introverted \(C^* \)-subalgebras of \(\mathcal{C}(G) \), and also for a discussion of properties \(P \) of compactifications and associated universal mapping properties.

2. Main results. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), and let \((\varphi, X) \) be a compactification of \(N \). Let \(\sim \) be the equivalence relation on \(G \times X \) with equivalence classes \(\{(sr^{-1}, \varphi(r)x) \mid r \in N \} \). Thus

\[
(s, x) \sim (t, y) \text{ if and only if } t^{-1}s \in N \text{ and } \varphi(t^{-1}s)x = y.
\]

\(\pi : G \times X \to (G \times X) / \sim \) will denote the quotient map. Clearly \(\pi \) is one-to-one on \(\{e\} \times X \), so we can identify \(X \cong \{e\} \times X \) with \(\pi(\{e\} \times X) \). It is important that \((G \times X) / \sim \) is locally compact and Hausdorff. In this connection we have the following lemmas, which are stated in [6].

Lemma 2.1.

(i) The graph of \(\sim \) is closed.

(ii) \(\pi : (G \times X) \to (G \times X) / \sim \) is an open mapping.

(iii) Let \(K \) be a compact subset of \(G \) and let \(L = KN \), then \(\pi(K \times X) = \pi(L \times X) \).

This lemma has the following easy consequences.

Lemma 2.2. The quotient space \((G \times X) / \sim \) is locally compact and Hausdorff.

Lemma 2.3. If \(G = KN \) for some compact subset \(K \) of \(G \), then \((G \times X) / \sim \) is compact.

Let \(\mu : G \to (G \times X) \) be defined by \(\mu(s) = (s, 1) \), where 1 is the identity of \(X \). Then, \(\pi \circ \mu : G \to (G \times X) / \sim \) is continuous as a composition of two continuous functions, and \(\pi \circ \mu(G) = \pi(G \times \varphi(N)) \), since for each \((s, \varphi(r)) \in G \times \varphi(N) \), \((s, \varphi(r)) \sim (sr, 1) \), and \(\pi \circ \mu(sr) = \pi(sr, 1) = \pi(s, \varphi(s)) \). Furthermore, if \(\varphi \) is a homeomorphism of \(N \) into \(X \), then \(\pi \circ \mu \) is also a homeomorphism.

We now define \(\sigma_s(r) = s^{-1}rs \) for \(s \in G \) and \(r \in N \); it is obvious that \(\sigma_s : N \to N \) is a surjective homomorphism for each \(s \in G \).

Definition 2.4. A \(\mathcal{P} \)-compactification \((\psi, X) \) of \(N \) is said to be a conjugation invariant \(\mathcal{P} \)-compactification of \(N \) if \((\psi \circ \sigma_s, X) \) is a \(\mathcal{P} \)-compactification of \(N \) for each \(s \in G \). When we write \(\mathcal{P} \)-compactification instead of \(P \)-compactification, this means that we want to emphasize its conjugation invariance, see Corollary 2.7.

Remark. The reader may have noticed that, the definition of \(\mathcal{P} \)-conjugation invariant compactification is different from the compatibility of a compactification in [6], because if \(\mathcal{P} \) is a property of compactifications that is not invariant under homomorphism and \((\psi, X) \) is a \(\mathcal{P} \)-compactification of \(N \) compatible with \(G \), then \((\psi \circ \sigma_s, X) \) is a
compactification of N which may not be a \mathcal{P}-compactification of N, thus (ψ, X) can fail to be a \mathcal{P}-conjugation invariant compactification of N. On the other hand, if (ψ, X) is a \mathcal{P}-conjugation invariant compactification of N, i.e., $(\psi \circ \sigma_s, X)$ is a \mathcal{P}-compactification of N for each $s \in G$, it is not always true that σ_s has an extension from X to X.

Lemma 2.5. Let G be a locally compact group, N a closed normal subgroup, and (φ, X) a conjugation invariant universal \mathcal{P}-compactification of N, then each σ_s can be extended continuously to a mapping from X to X.

Proof. By conjugation invariance of (φ, X), $(\varphi \circ \sigma_s, X)$ is a \mathcal{P}-compactification of N, and by universality of (φ, X) there exists a continuous homomorphism $\nu : X \to X$ such that $\varphi \circ \sigma_s = \nu \circ \varphi$ for each $s \in N$. This ν is the continuous function extending σ_s.

It is obvious that if (φ, X) is a conjugation invariant universal \mathcal{P}-compactification of N, then each σ_s determines a continuous transformation of X, for which we use the same notation σ_s.

Corollary 2.6. Let N be contained in the center of G, then each compactification (φ, X) of N is conjugation invariant.

Corollary 2.7. Let (ϵ, N^φ) denote a universal \mathcal{P}-compactification of N and let \mathcal{P} be a purely algebraic property, then (ϵ, N^φ) is a conjugation invariant \mathcal{P}-compactification of N.

Notice our deviation from the usual notation.

Corollary 2.8. Let (φ, X) be an \mathcal{F}-compactification of N, where \mathcal{F} stands for either of the spaces $\mathcal{A}\mathcal{P}$ and $\mathcal{W}\mathcal{A}\mathcal{P}$, then (φ, X) is a conjugation invariant \mathcal{F}-compactification of N.

Lemma 2.9. Let (φ, X) be a conjugation invariant \mathcal{P}-compactification of N, then for each $s \in G$, σ_s is a continuous automorphism of X.

Proof. σ_s is a homeomorphism of X onto X (since $\sigma_s(N) = N$ and $\sigma_s \sigma_s^{-1} = I$, the identity mapping). Now, we show that σ_s is a homomorphism. Obviously,

$$\sigma_s(xy) = \sigma_s(x) \sigma_s(y) \quad \text{for each } x, y \in \varphi(N). \tag{2.2}$$

Since X is a right topological semigroup with $\varphi(N) \subset \Lambda(X)$, we conclude that (2.2) holds for each $x \in \varphi(N)$, $y \in X$. Then it follows that (2.2) holds for all $x, y \in X$, as required.

If N is a closed subgroup of G, and X is a conjugation invariant \mathcal{P}-compactification of N, then we can define a semidirect product structure on $G \times X$ by $(s, x)(t, y) = (st, \sigma_t(x)y)$, where σ_t is the conjugation map.

Lemma 2.10. Let G be a locally compact group with a closed normal subgroup N, and let (φ, X) be a conjugation invariant \mathcal{P}-compactification of N, then $G \times X$ is a right topological semigroup. Furthermore, the map

$$(s, r), (t, y)) \mapsto (st, \varphi(\sigma_t(r)y) : (G \times N) \times (G \times X) \to G \times X \quad \tag{2.3}$$
is continuous, and the equivalence relation \(\sim \) is a congruence on \(G \times X \).

Proof. The continuity is an easy conclusion of Ellis theorem. Now, we show that \(\sim \) is a congruence. Suppose \((s, x) \sim (t, y)\) and \((u, z) \in G \times X\), then \(t^{-1}s \in N\) and
\[
\varphi((t^{-1}s)x) = y, \text{ so } (s, x)(u, z) = (su, \sigma_u(x)z) \text{ and } (t, y)(u, z) = (tu, \sigma_u(y)z).
\]
On the other hand, \((su, \sigma_u(x)z) \sim (tu, \sigma_u(y)z)\) since \((tu)^{-1}su = u^{-1}t^{-1}su \in N\) and
\[
\varphi((tu)^{-1}su) \sigma_u(x)z = \sigma_u(y)z,
\]
thus
\[
(s, x)(u, z) \sim (t, y)(u, z).
\]
(2.4)
Similarly
\[
(u, z)(s, x) \sim (u, z)(t, y).
\]
(2.5)

The following theorem is an easy consequence of the previous corollaries and lemmas.

Theorem 2.11. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), and let \((\varphi, X)\) be a conjugation invariant compactification of \(N \). Then \((G \times X)/\sim\) is a locally compact right topological semigroup, and a compactification of \(G \), provided that \(G = KN \) for some compact subset \(K \) of \(G \).

Theorem 2.12. The compactification \((\pi \circ \mu, (G \times X)/\sim)\) of \(G \) described in the previous theorem has the following universal property; let \((\varphi, Y)\) be a semigroup compactification of \(G \) such that \(\varphi|_N \) extends to a continuous homomorphism \(\phi : X \to Y \) in such a way that for each \(s \in G \) and \(x \in X \),
\[
\phi(\sigma_s(x)) = \varphi(s^{-1})\phi(x)\varphi(s),
\]
then there exists a (unique) continuous homomorphism \(\theta : (G \times X)/\sim \to Y \) such that \(\theta \circ \pi \circ \mu = \varphi \).

Proof. We define \(\theta_0 : G \times X \to Y \) by \(\theta_0(s, x) = \varphi(s)\phi(x) \), then \(\theta_0 \) is a continuous homomorphism which is constant on \(\sim \)-classes of \(G \times X \). Now we take \(\theta = \theta_0 \circ \pi \).

Theorem 2.13. Let \(N \) be a closed normal subgroup of \(G \) with \(G = KN \) for some compact subset \(K \) of \(G \). Suppose that \(\mathcal{P} \) is a property of compactifications such that \((\varphi|_N, \varphi(N))\) is a \(\mathcal{P} \)-compactification of \(N \) whenever \((\varphi, \varphi(G))\) is a \(\mathcal{P} \)-compactification of \(G \). Suppose that \((\epsilon, N^\mathcal{P})\) is a conjugation invariant universal \(\mathcal{P} \)-compactification of \(N \). If \((G \times N^\mathcal{P})/\sim \) has the property \(\mathcal{P} \), then \((G \times N^\mathcal{P})/\sim \) is the universal \(\mathcal{P} \)-compactification of \(G \).

Proof. We show that \((G \times N^\mathcal{P})/\sim \) is the universal \(\mathcal{P} \)-compactification of \(G \). Let \((\varphi, X)\) be a \(\mathcal{P} \)-compactification of \(G \) such that \((\varphi|_N, \varphi(N))\) is a \(\mathcal{P} \)-compactification of \(N \), by the universal property of \(N^\mathcal{P} \) there exists a continuous homomorphism \(\phi : N^\mathcal{P} \to X \) such that \(\phi \circ \epsilon = \varphi|_N \), and we have \(\phi(\sigma_s(x)) = \varphi(s^{-1})\phi(x)\varphi(s) \) for all \(s \in G \) and \(x \in N^\mathcal{P} \). Notice that we use two different scripts of the same letter to emphasize
their connection. Indeed, for fixed \(s \in G \), both sides represent homomorphisms of \(N^3 \) into \(X \), both sides are continuous in \(x \), and coincide on the dense subspace \(N \). Now the map \(\varphi \times \phi : (G \times N^3) \to X \) defined by \((\varphi \times \phi)(s, x) = \varphi(s)\phi(x) \) is continuous and a homomorphism, since

\[
(\varphi \times \phi)((s, x)(t, y)) = (\varphi \times \phi)(st, \sigma_t(x)y) = \varphi(st)\phi(\sigma_t(x)y) = \varphi(s)\varphi(t)\phi(\sigma_t(x))\phi(y) = \varphi(s)\phi(x)\phi(t)\phi(y) \tag{2.8}
\]

Also \(\varphi \times \phi \) is constant on \(\sim \)-classes, thus the quotient of \(\varphi \times \phi \) gives a continuous homomorphism from \((G \times N^3)/\sim \) to \(X \).

Corollary 2.14. Let \(N \) be a closed normal subgroup of \(G \) with \(G = KN \) for some compact subset \(K \) of \(G \), then

(i) \((G \times N^3)/\sim \) is the universal \(\mathcal{L}^\mathcal{E} \)-compactification of \(G \).

(ii) \((G \times N^3)/\sim \) is the universal \(\mathcal{D} \)-compactification of \(G \).

Proof. (i) Since \((G \times N^3)/\sim \) is a compactification of \(G \), by Theorem 2.13, \((G \times N^3)/\sim \) is the universal \(\mathcal{L}^\mathcal{E} \)-compactification of \(G \).

(ii) Since \(N^3 \) is a group, \((G \times N^3)/\sim \), the quotient by a congruence of a semidirect product of groups is also a group, thus by Theorem 2.13 \((G \times N^3)/\sim \) is the universal \(\mathcal{D} \)-compactification of \(G \).

In some situations, we want to be able to conclude that the right topological semigroup \((G \times X)/\sim \) of Theorem 2.13 is also left topological. The following lemma can be helpful in this connection.

Lemma 2.15. Let \(G \) be a locally compact group with a closed normal subgroup \(N \) and let \(X \) be a universal conjugation invariant compactification of \(N \). Suppose that \(G = KN \) for some compact subset \(K \) of \(G \) and \(s \to \sigma_s(x) : G \times X \to X \) is continuous for all \(x \in X \). Then \((G \times X)/\sim \) is semitopological.

Proof. Since \((s, x) \sim \sigma_s(x) : G \times X \to X \) is a group action, it is continuous by Ellis theorem, thus \(G \times X \) is semitopological semigroup and also \((G \times X)/\sim = \pi(G \times X) \).

Corollary 2.16. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), \(G = KN \) for some compact subset \(K \) of \(G \) and suppose that \(s \sim \sigma_s(x) : G \to N^3 \) is continuous for all \(x \in N^3 \), then \((G \times N^3)/\sim \) is the universal semitopological semigroup compactification of \(G \).

Proof. Since \(N^3 \) is a semitopological semigroup, by Lemma 2.15, \((G \times N^3)/\sim \) is semitopological semigroup. Thus by Theorem 2.13, \((G \times N^3)/\sim \) is the universal semitopological semigroup compactification of \(G \).

A similar argument yields the following corollary.

Corollary 2.17. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), \(G = KN \) for some compact subset \(K \) of \(G \) and suppose that \(s \sim \sigma_s(x) : G \to N^3 \) is
continuous for all \(x \in \mathbb{N} \), then \((G \times \mathbb{N}^d) / \sim\) is the universal topological semigroup compactification of \(G \).

Lemma 2.18. Let \(N \) be a closed normal subgroup of \(G \) with \(G = KN \) for some compact subset \(K \) of \(G \). Let \(\mathcal{F} \) and \(\mathcal{G} \) be left \(m \)-introverted subalgebras of \(\mathcal{F}(N) \) and \(\mathcal{F}(G) \), respectively. Then \(\mathbb{N}^d \) is a conjugation invariant \(\mathcal{F} \)-compactification of \(N \) if and only if \(\mathcal{G}_N = \mathcal{F} \) and \((G \times \mathbb{N}^d) / \sim\) is the \(\mathcal{G} \)-compactification of \(G \).

Proof. Let \(\mathcal{G}_N = \mathcal{F} \), we define \(\sigma_s(x)(f) \) for \(s \in G, x \in \mathbb{N}^d \) and \(f \in \mathcal{F} \) by \(\sigma_s(x)(f) = x(g \circ \sigma_s|_N) \), where \(g \in \mathcal{G}, g|_N = f \). Since every such extension \(g \) yields a \(g \circ \sigma_s \) agreeing with \(f \circ \sigma_s \) on \(N \), \(\sigma_s(x) \) is well defined. So \(\mathbb{N}^d \) is a conjugation invariant \(\mathcal{F} \)-compactification of \(N \).

Conversely, since the quotient map \(\pi : G \times \mathbb{N}^d \to (G \times \mathbb{N}^d) / \sim \) is injective on the compact set \(\mathbb{N}^d \equiv \{e\} \times \mathbb{N}^d \), it gives a topological isomorphism of \(\mathbb{N}^d \) into \(G / \mathcal{G} \). \(\square \)

Corollary 2.19. Let \(G \) be a compact group with a closed normal subgroup \(N \), then

(i) \((G \times \mathbb{N}^d) / \sim \cong \mathbb{N}^d \).

(ii) \((G \times \mathbb{N}^d) / \sim \cong \mathbb{N}^d \).

Corollary 2.20. Let \(N \) be a closed normal subgroup of a locally compact group \(G \) contained in the center of \(G \), then

\[
\left(G \times \mathbb{N}^d\right) / \sim \cong \mathbb{N}^d .
\] (2.9)

The next example shows that the continuity of \(s \to \sigma_s(x) \) in Corollary 2.14 and Lemma 2.15 is an essential condition.

Example 2.21. Let \(G = \mathbb{C} \times \mathbb{T} \) be the Euclidean group of the plane with \((z, w)(z_1, w_1) = (z + wz_1, w w_1)\) and \(N = \mathbb{C} \times \{1\} \), then \(N \) is a closed normal subgroup of \(G \) and \(\mathbb{A}P(G)|_N \) is a proper subset of \(\mathbb{A}P(N) \) \([4, 8]\), so by Lemma 2.15 \((G \times \mathbb{C}^d) / \sim \) is not the universal \(\mathbb{A}P \)-compactification of \(G \). \(\mathbb{C}^d \) is a conjugation invariant compactification of \(N \), so the continuity of \(s \to \sigma_s \) must fail to hold Lemma 2.15. From \([4, 8]\), we can similarly conclude that \((G \times \mathbb{C}^d) / \sim \) is not the universal \(\mathbb{W}A\mathbb{P} \)-compactification of \(G \) and that the continuity of \(s \to \sigma_s \), as required by Corollary 2.14, also fails to hold.

References

Miri: Department of Mathematics, University of Birjand, Birjand, Iran

Pourabdollah: Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

E-mail address: pourabd@science2.um.ac.ir
Advances in Difference Equations

Special Issue on
Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor
Victoria Otero-Espinarp, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es

Hindawi Publishing Corporation
http://www.hindawi.com