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Abstract. We shall consider the behaviour of Ishikawa iteration with errors in a uniformly
convex Banach space. Then we generalize the two theorems of Tan and Xu without the
restrictions that C is bounded and limsupn sn < 1.
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1. Introduction. Let C be a closed convex subset of a Banach space X and T : C → C
be nonexpansive (that is, ‖Tx−Ty‖ ≤ ‖x−y‖ for all x,y in C). In 1974, Ishikawa [1]
introduced a new iteration process as

xn+1 = tnT
(
snTxn+

(
1−sn

)
xn
)+(1−tn)xn, n= 0,1,2, . . . , (1.1)

where {tn} and {sn} are sequences in [0,1] satisfying certain restrictions. The Mann
iteration process is a special case of Ishikawa where sn = 0 for all n≥ 0 [4].
In 1993, Tan and Xu [7] obtained following result: let C be a bounded closed con-

vex subset of a uniformly convex Banach space X,T : C → C a nonexpansive map-
ping. If for any initial guess x0 in C, {xn} defined by (1.1), with the restrictions that∑∞
n=0 tn(1−tn)=∞,

∑∞
n=0 sn(1−tn) <∞, and limsupn sn < 1, then limn→∞‖xn−Txn‖

= 0.
Let C be a closed convex subset of a Banach space X and T : C → C be nonexpansive.

For any given x0 ∈ C the sequence {xn} defined by

xn+1 =αnxn+βnTyn+γnun, yn = α̂nxn+ β̂nTxn+ γ̂nvn, n≥ 0. (1.2)

is called the Ishikawa iteration sequence with errors. Here {un} and {vn} are two
bounded sequences in C , and {αn},{βn},{γn},{α̂n},{β̂n}, and {γ̂n} are six sequences
in [0, 1] satisfying the conditions

αn+βn+γn = α̂n+ β̂n+ γ̂n = 1 for all n≥ 0. (1.3)

In particular, if β̂n = γ̂n = 0 for all n≥ 0, the {xn} defined by

x0 ∈ C, xn+1 =αnxn+βnTxn+γnun, n≥ 0, (1.4)

is called the Mann iteration sequence with errors.
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Remark 1.1. Note the Ishikawa and Mann iterative processes are all special cases
of the Ishikawa and Mann iterative processes with errors.
It has been shown that if C is a nonempty bounded closed convex subset of a uni-

formly convex Banach space X, then every nonexpansive mapping T : C → C has a
fixed point (see [2]). In this paper, we first extend [7, Lemma 2.3] to the Ishikawa it-
eration sequence with errors (1.2), without the restrictions that C is bounded and
limsupn sn < 1. Then we generalize [7, Theorems 3.1, 3.2, and 3.4].

2. Lemmas

Lemma 2.1. Suppose that {an},{bn}, and {cn} are three sequences of nonnegative
numbers such that

an+1 ≤
(
1+bn

)
an+cn for all n≥ 1. (2.1)

If
∑∞
n=1bn and

∑∞
n=1 cn converges, then limn→∞an exists.

Proof. For n,m≥ 1, we have

an+m+1 ≤
(
1+bn+m

)
an+m+cn+m

≤
n+m∏
i=n

(
1+bi

)
an+

n+m∑
i=n

n+m∏
j=i+1

(
1+bj

)
ci

≤ ··· ≤
n+m∏
i=n

(
1+bi

)
an+

n+m∏
j=n

(
1+bj

)n+m∑
i=n

ci.

(2.2)

It follows that

limsup
m �→∞

am ≤
∞∏
i=n

(
1+bi

)
an+

∞∏
j=n

(
1+bj

) ∞∑
i=n

ci. (2.3)

Hence, limsupm→∞am ≤ liminfn→∞an. This completes the proof.

Lemma 2.2. Let C be a closed convex subset of a Banach space X, and let T : C →X
a nonexpansive mapping. Then for any initial guess x0 in C, {xn} defined by (1.2),∥∥xn+1−p∥∥≤ ∥∥xn−p∥∥+γn∥∥un−p∥∥+βnγ̂n∥∥vn−p∥∥, (2.4)

for all n≥ 1 and for all p ∈ F(T), where F(T), denotes the set of fixed points of T .
Proof. For all p ∈ F(T), we have∥∥xn+1−p∥∥
≤αn

∥∥xn−p∥∥+βn∥∥Tyn−p∥∥+γn∥∥un−p∥∥
≤αn

∥∥xn−p∥∥+βn(α̂n∥∥xn−p∥∥+ β̂n∥∥Txn−p∥∥+ γ̂n∥∥vn−p∥∥)+γn∥∥un−p∥∥
≤ ∥∥xn−p∥∥+γn∥∥un−p∥∥+βnγ̂n∥∥vn−p∥∥.

(2.5)

This completes the proof.

Lemma 2.3 [3]. LetC be a closed convex subset of a uniformly convex Banach spaceX,
and let T : C →X a nonexpansive mapping. Then the mapping I−T is demiclosed on C .
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3. Main Results

Theorem 3.1. Let C be a closed convex subset of a uniformly convex Banach space
X,T : C → C a nonexpansive mapping with a fixed point. If for any initial guess x0
in C, {xn} defined by (1.2), with the restrictions that

∑∞
n=0αnβn = ∞,

∑∞
n=0αnβ̂n <

∞, ∑∞
n=0γn <∞ and

∑∞
n=0 γ̂n <∞, then limn→∞‖xn−Txn‖ = 0.

Proof. By Lemma 2.2 and T with a fixed point, we set

M = sup
n≥0

(∥∥Txn−un∥∥,∥∥xn−un∥∥,∥∥Tyn−vn∥∥,∥∥yn−un∥∥,∥∥xn−vn∥∥) (3.1)

It follows from (1.2) that∥∥xn+1−Txn+1∥∥≤αn∥∥xn−Txn+1∥∥+βn∥∥Tyn−Txn+1∥∥+γn∥∥Txn+1−un∥∥
≤αn

(∥∥xn−Txn∥∥+∥∥Txn−Txn+1∥∥)
+βn

(
αn
∥∥yn−xn∥∥+βn∥∥yn−Tyn∥∥+γn∥∥yn−un∥∥)+γnM

≤αn
(∥∥xn−Txn∥∥+βn∥∥xn−Tyn∥∥)+αnβnβ̂n∥∥xn−Txn∥∥

+β2n
(
α̂n
∥∥xn−Tyn∥∥+ β̂n∥∥Txn−Tyn∥∥)+γnM+βnγn∥∥yn−un∥∥

+αnγn
∥∥xn−un∥∥+αnβnγ̂n∥∥xn−vn∥∥+β2nγ̂n∥∥Tyn−vn∥∥

≤αn
∥∥xn−Txn∥∥+αnβn∥∥xn−Tyn∥∥+αnβnβ̂n∥∥xn−Txn∥∥

+β2nα̂n
∥∥xn−Tyn∥∥+β2nβ̂n∥∥xn−yn∥∥+2γnM+βnγ̂nM

≤ (αn+αnβnβ̂n+β2nβ̂2n)∥∥xn−Txn∥∥
+(αnβn+β2nα̂n)(∥∥xn−Txn∥∥+∥∥Txn−Tyn∥∥)
+2γnM+βnγ̂nM+β2nβ̂nγ̂nM

≤ (αn+αnβnβ̂n+β2nβ̂2n+αnβn+β2nα̂n+αnβnβ̂n+β2nα̂nβ̂n)
×∥∥xn−Txn∥∥+2γnM+βnγ̂nM+(αnβn+β2nα̂n+β2nβ̂n)γ̂nM

≤ (1+2αnβnβ̂n)∥∥xn−Txn∥∥+2(γn+βnγ̂n)M.
(3.2)

Setting an = Txn − xn, bn = 2αnβnβ̂n, and cn = 2(γn + βnγ̂n)M , it follows from
Lemma 2.1 that limn→∞‖an‖ exists.
Let r(x0)= limn→∞‖xn−Txn‖. To reach the desired conclusion, it suffices to show

that r(x0) is independent of the initial valuex0. We let {x∗n} denote iteration (1.2) com-
mencing at x∗0 . Since ‖xn+1−x∗n+1‖ ≤ ‖xn−x∗n‖, we may assume that limn→∞‖xn−
x∗n‖ = d> 0. Then, we obtain∥∥xn+1−x∗n+1∥∥= ∥∥αn(xn−x∗n)+βn(Tyn−Ty∗n )∥∥

≤
[
1−2αnβnδ

(∥∥xn−x∗n−(Tyn−Ty∗n )∥∥∥∥xn−x∗n∥∥
)]∥∥xn−x∗n∥∥, (3.3)

since ‖Tyn−Ty∗n‖ ≤ ‖xn−x∗n‖. Thus,
n∑
i=0

2αiβiδ
(∥∥xi−x∗i −(Tyi−Ty∗i )∥∥∥∥xi−x∗i ∥∥

)∥∥xi−x∗i ∥∥≤ ∥∥x0−x∗0 ∥∥−∥∥xn+1−x∗n+1∥∥. (3.4)
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It follows that

∞∑
n=0

αnβnδ
(∥∥xn−x∗n−(Tyn−Ty∗n )∥∥∥∥xn−x∗n∥∥

)
<∞. (3.5)

By condition
∑∞
n=0αnβ̂n <∞, we have

∑∞
n=0αnβnβ̂n <∞. Thus,

∞∑
n=0

αnβn

{
δ
[∥∥xn−x∗n−(Tyn−Ty∗n )∥∥∥∥xn−x∗n∥∥

]
+ β̂n

}
<∞. (3.6)

It follows that

liminf
n �→0

[∥∥xn−x∗n−(Tyn−Ty∗n )∥∥+ β̂n]= 0 (3.7)

since
∑∞
n=0αnβn =∞ and δ is the modulus of convexity of uniformly convex Banach

space X. Hence, there is a sequence {nk} ⊂ {n} such that

lim
k→∞

∥∥xnk−x∗nk−(Tynk−Ty∗nk)∥∥= 0, lim
k→∞

β̂nk = 0. (3.8)

On the other hand, we have∣∣∥∥xnk−Txnk∥∥−∥∥x∗nk−Tx∗nk∥∥∣∣
≤∥∥(xnk−Txnk)−(x∗nk−Tx∗nk)∥∥
≤∥∥xnk−x∗nk−(Tynk−Ty∗nk)∥∥+∥∥Txnk−Tynk∥∥+∥∥Tx∗nk−Ty∗nk∥∥
≤∥∥xnk−x∗nk−(Tynk−Ty∗nk)∥∥+ β̂nk∥∥xnk−Txnk∥∥+ β̂nk∥∥x∗nk−Tx∗nk∥∥+2γ̂nM.

(3.9)

Setting k→∞ in (3.9), it follows from (3.8) that

lim
k→∞

∣∣∥∥xnk−Txnk∥∥−∥∥x∗nk−Tx∗nk∥∥∣∣= 0. (3.10)

Thus,

lim
n→∞

∣∣∥∥xn−Txn∥∥−∥∥x∗n−Tx∗n∥∥∣∣= 0, (3.11)

that is, r(x0)= r(x∗0 ). This completes the proof.

Recall that a Banach space X is said to satisfy Opial’s condition [5] if the condition
xn→ x0 weakly implies

limsup
n �→∞

∥∥xn−x0∥∥< limsup
n �→∞

∥∥xn−y∥∥ for all y ≠ x0. (3.12)

Theorem 3.2. Let C be a closed convex subset of a uniformly convex Banach space
X which satisfies Opial’s condition, T : C → C a nonexpansive mapping with a fixed
point, and {xn} as in Theorem 3.1. Then {xn} converges weakly to a fixed point of T .

Proof. Let ωw(xn) be the weak limit ω-set of {xn}. By Lemma 2.3 and
Theorem 3.1, ωw(xn) is contained in F(T), the fixed point set of T .
The remainder of the proof is similar to that of [7, Theorem 3.1], so the details are

omitted.
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Remark 3.3. Theorem 3.2 generalizes [7, Theorem 3.1].

Recall that a mapping T : C → C with a nonempty fixed points set F(T) in C will be
said to satisfy condition A [6] if there is a nondecreasing function f : [0,∞)→ [0,∞)
with f(0) = 0, f (r) > 0 for r ∈ (0,∞), such that ‖x−Tx‖ ≥ f(d(x,F(T))) for all
x ∈ C , where d(x,F(T))= inf{‖x−z‖ : z ∈ F(T)}.
The following two theorems generalize Theorem 3.2 and [7, Theorem 3.4] respec-

tively. Since a similar proof is in [7], we omit their proof here.

Theorem 3.4. Let X,C,T , and {xn} be as in Theorem 3.1. If the range of C under
T is contained in a compact subset of X, then {xn} converges strongly to a fixed point
of T .

Theorem 3.5. Let X,C,T and {xn} be as in Theorem 3.1. If T with a nonempty
fixed points set F(T) satisfies condition A, then {xn} converges strongly to a fixed point
of T .
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