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FIRST EIGENVALUE OF SUBMANIFOLDS IN EUCLIDEAN SPACE
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Abstract. We give some estimates of the first eigenvalue of the Laplacian for compact and
non-compact submanifold immersed in the Euclidean space by using the square length of
the second fundamental form of the submanifold merely. Then some spherical theorems
and a nonimmersibility theorem of Chern and Kuiper type can be obtained.
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1. Introduction. Let M be an n-dimensional compact connected submanifold im-
mersed in the Euclidean space Rn+p . Denote by ‖σ‖2 and λ1 the square length of
the second fundamental form and the first eigenvalue of the Laplacian of M . It is
well known that if M is a standard hypersphere in the Euclidean space Rn+1, then
λ1 = n. We find that ‖σ‖2 is equal to n at the same time, i.e., λ1 = ‖σ‖2. Inspiring
the exterior rigidity of sphere, a natural problem appears: can you characterize those
submanifolds immersed in Rn+p as n-sphere by λ1 and ‖σ‖2?
The main goal of this paper is to give an affirmative answer for this question. In fact

we can prove the following further result.

Theorem 1.1. Let M be a compact submanifold immersed in the Euclidean space
Rn+p . Denote by ‖σ‖2 the square length of the second fundamental form and λ1 the
first eigenvalue of the Laplacian ofM . Then λ1 ≤maxM ‖σ‖2. Furthermore, if λ1 ≥ ‖σ‖2
holds at any point of M , then M is isometric to a sphere Sn.

According to Nash’s imbedded theorem, every Riemannian manifold can be iso-
metrically imbedded in a Euclidean space of sufficiently large dimension. It is very
significant to investigate the geometry of submanifold of the Euclidean space. For ex-
ample, in the case of an n-dimensional compact hypersurface immersed in the sphere
Sn+1(c) with constant curvature c in the Euclidean space Rn+2, similar conclusion can
be obtained immediately as follows.

Theorem 1.2. Let M be a compact hypersurface immersed in the sphere Sn+1(c).
Denote by ‖σ‖2 the square length of the second fundamental form and λ1 the first
eigenvalue of the Laplacian of M . Then λ1 ≤ nc+maxM ‖σ‖2. Furthermore, if λ1 ≥
nc + ‖σ‖2 holds at any point of M , then ‖σ‖2 = 0 and M is isometric to a totally
geodesic sphere Sn(c).

In fact we set up a sharp estimate of the upper bound for the first eigenvalue of
M in Rn+p by using merely ‖σ‖2. A useful version of the lower bound for the Ricci
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curvature of submanifold stated as a lemma will be given. The lemma can be applied
not only to the estimate of the first eigenvalue for both compact and non-compact
submanifolds in the Euclidean space Rn+p , but in some propositions of the geome-
try of submanifolds (see [2, 7]). As is well known, this type of theorems of compact
hypersurfaces in the Euclidean space Rn+1 was also proven by some authors such as
Reilly, Ros, and Deshmukh (see [4, 8, 9]). Deshmukh obtained similar results under
the condition thatM is a strictly convex hypersurface immersed in Rn+1. We shall deal
with the more general case without the assumption of convexity of hypersurfaces.
As an application in the proof of Theorem 1.1, a new nonimmersibility theorem of

Chern and Kuiper type [3] can be obtained as follows.

Theorem 1.3. Let M be an n-dimensional compact Riemannian manifold whose
Ricci curvatureRic and scalar curvatureR satisfyRic(v,v)+R ≥ 0 andR <n(n−1)λ−2
for each unit vector field v and some constant λ > 0. Then no isometric immersion of
M into the Euclidean space Rn+1 is contained in a ball Bn+1 of radius λ.

Deshmukh and Al-Gwaiz [5] proved a similar result under the assumption that the
dimension of manifolds should be odd. Furthermore, when the dimension of M is
odd say 2m−1, the condition R < 2(2m−1)(m−1)λ−2 in Theorem 1.3 is better than
Ric< 2(m−1)λ−2 stated in [5].

2. Preliminaries. Let M be a compact submanifold immersed in Rn+p . Take a local
orthonormal frame field {e1, . . . ,en+p} in Rn+p around a point p ∈M such that when
restricting onM, {e1, . . . ,en} are tangent toM and {en+1, . . . ,en+p} are normal toM . Let
∇,∇̄, and ∇̄⊥ be the Riemannian connections on Rn+p, TM , and (TM)⊥, respectively.
The Gauss and Weingarten formulas are

∇̄XY =∇XY +B(X,Y), ∇̄Xeα =−AαX+∇̄⊥Xeα, (2.1)

where n+ 1 ≤ α ≤ n+p, X,Y are vector fields on M . Denote Hα the trace of the
Weingarten transformation Aα, then the mean curvature of the immersion can be
written as

H = 1
n

√∑
α

H2
α. (2.2)

From the Gauss equation we have

Ric(X,Y)=Hα
〈
Aα(X),Y

〉−〈Aα(X),Aα(Y)
〉
, (2.3)

R =n2H2−‖σ‖2, (2.4)

where Ric and R are the Ricci curvature and the scalar curvature of M . We accept the
convention that the double indexes mean the summation.
Let x :M →Rn+p be an isometric immersion. For q ∈M, x(q) also means the posi-

tion vector of q with origin zero. The support function ρα :M → R of the immersion
x is given by

ρα(q)=
〈
x,eα

〉
q. (2.5)
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We define M → R by f = (1/2)‖x‖2 as Reilly did in [8]. Let us denote by ∇f the
gradient of the function f . Then

x =∇f +ραeα. (2.6)

Proof of Theorem 1.1. From the definition of the Riemannian curvature opera-
tor

R(X,Y)Z = (∇X∇YZ−∇Y∇XZ−∇[X,Y]Z
)
, (2.7)

we get

R
(
ei,ej

)∇f = (∇ei∇ej −∇ej∇ei
)∇f . (2.8)

Without loss of generality we suppose ∇eiej|q = 0 for q ∈M . Hence

Ric(∇f ,∇f)= 〈(∇ei∇ej −∇ej∇ei
)∇f ,ei

〉〈∇f ,ej
〉
. (2.9)

Integrating both sides of (2.9) and using the divergence theorem, it follows that

∫
M

〈∇ei∇f ,ei
〉2−‖∇∇f‖2−Ric(∇f ,∇f)= 0. (2.10)

We have at q,

∇X∇f = 〈∇̄Xx,ej
〉
ej+

〈
x,∇̄Xej

〉
ej =X+〈x,B

(
X,ej

)〉
ej =X+ραAα(X). (2.11)

Hence

∆f =n+ραHα. (2.12)

Integrating both sides of (2.12) and using Stokes theorem, we get

∫
M
n+ραHα = 0. (2.13)

When p = 1 the expression becomes the classical Minkowski formula. It follows from
(2.11) that

〈∇ei∇f ,ei
〉2 =n2+2nραHα+

(
ραHα

)2, ‖∇∇f‖2 =n+2ραHα+
∥∥ραAα

∥∥2. (2.14)
Substituting (2.14) in (2.10), we reach

∫
M
ραρβ

(
HαHβ−

〈
AαAβ

〉)−Ric(∇f ,∇f)=n(n−1)VolM, (2.15)

where VolM expresses the volume of M . We take the center of mass of M as the
origin zero of Rn+p . Then

∫
M x = 0. According to the max-minimum principle we get

nVolM =−
∫
M
〈∆x,x〉 ≥ λ1

∫
M
‖x‖2, (2.16)
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in which λ1 is the first eigenvalue of M . Using an orthogonal transformation to {en+1,
. . . ,en+p}, we can make the symmetric matrix (HαHβ − 〈Aα,Aβ〉) to be diagonal at
q ∈M . Without loss of generality, we may assume that (HαHβ−〈Aα,Aβ〉) is diagonal
at q. By using the Schwartz inequality it follows that

∑
α

ρ2α
(
H2

α−
∥∥Aα

∥∥2)≤ (n−1)
∑
α

ρ2α
∥∥Aα

∥∥2 ≤ (n−1)‖σ‖2
∑
α

ρ2α. (2.17)

We get from (2.15), (2.16), and (2.17)

λ1‖x‖2 ≤
∫
M
‖σ‖2

∑
α

ρ2α−
1

n−1 Ric(∇f ,∇f). (2.18)

It follows from the following lemma that

Ric(∇f ,∇f)≥−
√
n−1
2

‖σ‖2‖∇f‖2. (2.19)

Therefore,

λ1
∫
M
‖x‖2 ≤

∫
M
‖σ‖2

(∑
α

ρ2α+
1

2
√
n−1‖∇f‖2

)
. (2.20)

Then we reach

λ1 ≤max
M
‖σ‖2. (2.21)

If the equality in (2.21) holds, then the equalities in (2.17), (2.19), and (2.20) also appear.
Hence ∇f = 0, ‖σ‖2 = constant and M lies in a sphere Sn+p−1. From (2.17) we get∑

αρ2α‖Aα‖2 = ‖σ‖2
∑

αρ2α, so it concludes that for some α, say α=n+1, ‖An+1‖2 =
‖σ‖2 and ‖An+2‖2 = ··· = ‖An+p‖2 = 0. Then M lies in a totally geodesic Sn+1. As M
is isometrically a closed submanifold in the Euclidean sphere, M should be isometric
to a sphere in Rn+1 with radius r =n/‖σ‖2. This ends the proof of Theorem 1.1.

Remark 2.1. It is an interesting fact that one can find the upper bounds of the
first eigenvalue for some kind of hypersurfaces by using Theorem 1.1. For example, as
well known, the Clifford hypersurfaces Mp×Mq = Sp(1/(

√
1+λ2))×Sq(λ/(

√
1+λ2)),

where integers p+q = n, are compact hypersurfaces in Sn+1 with constant ‖σ‖2 =
n+pλ2+q/λ2 (see [3]), then we have λ1(Mp×Mq)≤n+pλ2+q/λ2.

3. Lemma and corollaries results. We need the following lemma.

Lemma 3.1. Let M be an n-dimensional submanifold immersed in a Riemannian
manifold Nn+p . Denote by Ric and ‖σN‖2 the functions on M that assign to each point
of M the minimum Ricci curvature and the square length of the second fundamental
form at the point, respectively. If all the sectional curvatures ofNn+p are bounded below
by k, then

Ric≥ (n−1)k−
√
n−1
2

‖σN‖2. (3.1)
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Proof. It is known from Cai and Leung (see [2, 7]) that

Ric≥ n−1
n

{
nk+nH2−‖ϕ‖2− n−2√

n−1
√
nH2‖ϕ‖

}
, (3.2)

where H is the mean curvature of the immersion and ‖ϕ‖2 = ‖σN‖2−nH2 (see [1]).
Let us consider the quadratic form with eigenvalues ±n/2

√
n−1:

F(x,y)= x2− n
2
√
n−1xy−y2. (3.3)

By using an orthogonal transformation, F(x,y) can be written as

F(x,y)= n
2
√
n−1

(
u2−v2

)
. (3.4)

Let x =√nH2, y = ‖ϕ‖ then x2+y2 = ‖σN‖2. It follows from x2+y2 =u2+v2 that

Ric≥ (n−1)k+
√
n−1
2

(
u2−V 2)≥ (n−1)k−

√
n−1
2

∥∥σN
∥∥2. (3.5)

Thus we derived the conclusion.

In the case of complete non-compact submanifolds in Rn+p , Gage (see [6]) proved
that λ1 ≤−(n−1)/4Ric. Together with Lemma 3.1, we obtain the following corollary.

Corollary 3.2. Let M be an n-dimensional complete non-compact submanifold
immersed in Rn+p . Then

λ1(M)≤ n−1
8

√
n−1sup

M
‖σ‖2. (3.6)

Now we consider the case of p = 1 in which M is a closed hypersurface immersed
in Rn+1. By using Lemma 3.1 and (2.4) in (2.15) we get

(n−1)λ1 ≤
∫
M

(
Rρ2+(

√
n−1/2)‖σ‖2‖∇f‖2)(∫
M ρ2+‖∇f‖2) ≤max

M

(
R,
√
n−1
2

‖σ‖2
)
. (3.7)

Hence we obtain the following corollary.

Corollary 3.3. Let M be a closed hypersurface immersed in Rn+1. Then

λ1 ≤max
M

{
R

n−1 ,
1

2
√
n−1‖σ‖

2
}

(3.8)

and the equality holds if and only if M is isometric to a sphere Sn(r) with radius r .

As is well known, a hypersurface inRn+1 possessing the non-negative Ricci curvature
implies that it is a convex hypersurface of Rn+1. Thus we can easily get from (2.15)
and (2.16) the following.

Corollary 3.4. Let M be a closed convex hypersurface immersed in Rn+1. If R ≤
(n−1)λ1 holds for all points of M . Then M is isometric to a sphere Sn(r).

Remark 3.5. Here we only need the condition Ric ≥ 0 rather than Ric > 0 which
was assumed by Deshmukh in [4]. We should point out that [4, Theorem 2] is very
obvious by means of the expression ∆f = n(1+ρH) and the property of harmonic
functions on the compact Riemannian manifold.



48 KAIREN CAI

Proof of Theorem 1.3. Suppose that there exists an isometric immersion x :
M →Rn+1 such that x(M) is contained in a ball Bn+1 of Rn+1 with radius λ. For p = 1
from (2.4), (2.15) becomes

∫
M
ρ2R−Ric(∇f ,∇f)−n(n−1)= 0. (3.9)

Now, we observe that the vector field ∇f is not identically zero on M . For if ∇f ≡ 0,
then f = constant, say f = (1/2)r 2 on M . We conclude that M is a sphere with radius
r . So R = n(n− 1)‖x‖−2, it contradicts the hypothesis R < n(n− 1)λ−2. Then we
can let v = ∇f/‖∇f‖ is the unit position vector field defined on the open subset of
M where ∇f is non-zero. Using ‖x‖2 = ‖∇f‖2+ρ2 in the integral formula (3.9), we
obtain ∫

M
‖∇f‖2(Ric(v,v)+R

)+n(n−1)−‖x‖2R = 0. (3.10)

From this hypothesis of the theorem it follows that Ric(v,v)+ S ≥ 0 and ‖x‖2R ≤
λ2R <n(n−1), we obtain a contradiction to (3.10). This ends the proof of Theorem 1.3.
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