FUZZY ASSOCIATIVE *IDEALS OF IS-ALGEBRAS*

EUN HWAN ROH, YOUNG BAE JUN, and WOOK HWAN SHIM

(Received 20 November 1999)

ABSTRACT. We fuzzify the concept of an associative \mathscr{F} -ideal in an **IS**-algebra. We give a relation between a fuzzy \mathscr{F} -ideal and a fuzzy associative \mathscr{F} -ideal, and we investigate some related properties.

Keywords and phrases. IS-algebra, (fuzzy) &-ideal, (fuzzy) associative &-ideal.

2000 Mathematics Subject Classification. Primary 06F35, 03G25, 94D05.

1. Introduction. The notion of BCK-algebras was proposed by Imai and Iséki in 1966. In the same year, Iséki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. For the general development of BCK/BCI-algebras, the ideal theory plays an important role. In 1993, Jun et al. [4] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the convenience of study, Jun et al. [7] renamed the BCI-semigroup (respectively, BCI-monoid and BCI-group) as the **IS**-algebra (respectively, **IM**-algebra and **IG**-algebra) and studied further properties of these algebras (see [6, 7]). In [8] Roh et al. introduced the concept of an associative \mathscr{I} -ideal and a strong \mathscr{I} -ideal in an **IS**-algebra. They gave necessary and sufficient conditions for an \mathscr{I} -ideal to be an associative \mathscr{I} -ideal and established a characterization of a strong \mathscr{I} -ideal of an **IS**-algebras. Jun et al. [3] established the fuzzification of \mathscr{I} -ideals in **IS**-algebras.

In this paper, we consider the fuzzification of an associative \mathscr{I} -ideal of an **IS**-algebra. We prove that every fuzzy associative \mathscr{I} -ideal is a fuzzy \mathscr{I} -ideal. By giving an appropriate example, we verify that a fuzzy \mathscr{I} -ideal may not be a fuzzy associative \mathscr{I} -ideal. We give a condition for a fuzzy \mathscr{I} -ideal to be a fuzzy associative \mathscr{I} -ideal, and we investigate some related properties.

2. Preliminaries. We review some definitions and properties that will be useful in our results.

By a *BCI-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) x * y = 0 and y * x = 0 imply x = y.

A BCI-algebra *X* satisfying $0 \le x$ for all $x \in X$ is called a *BCK-algebra*. In any BCI-algebra *X* one can define a partial order " \le " by putting $x \le y$ if and only if x * y = 0.

A BCI-algebra *X* has the following properties for any $x, y, z \in X$:

- (1) x * 0 = x,
- (2) (x * y) * z = (x * z) * y,
- (3) $x \le y$ implies that $x * z \le y * z$ and $z * y \le z * x$,
- (4) $(x * z) * (y * z) \le x * y$,
- (5) x * (x * (x * y)) = x * y,
- (6) 0 * (x * y) = (0 * x) * (0 * y),
- (7) 0 * (0 * ((x * z) * (y * z))) = (0 * y) * (0 * x).

A nonempty subset *I* of a BCK/BCI-algebra *X* is called an *ideal* of *X* if it satisfies:

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Any ideal *I* has the property: $y \in I$ and $x \leq y$ imply $x \in I$.

For a BCI-algebra *X*, the set $X_+ := \{x \in X \mid 0 \le x\}$ is called the *BCK-part* of *X*. If $X_+ = \{0\}$, then we say that *X* is a *p*-semisimple BCI-algebra. Note that a BCI-algebra *X* is *p*-semisimple if and only if 0 * (0 * x) = x for all $x \in X$.

In [4], Jun et al. introduced a new class of algebras related to BCI-algebras and semigroups, called a *BCI-semigroup*, and in [7] they renamed it as an **IS**-*algebra* for the convenience of study.

By an **IS**-*algebra* [7] we mean a nonempty set *X* with two binary operations "*" and " \cdot " and constant 0 satisfying the axioms:

(V) I(X) := (X, *, 0) is a BCI-algebra.

(VI) $S(X) := (X, \cdot)$ is a semigroup.

(VII) The operation " \cdot " is distributive (on both sides) over the operation "*," that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

Especially, if I(X) := (X, *, 0) is a *p*-semisimple BCI-algebra in the definition of **IS**-algebras, we say that *X* is a **PS**-*algebra*. We write the multiplication $x \cdot y$ by xy, for convenience.

EXAMPLE 2.1 (see [8]). Let $X = \{0, a, b, c\}$ be a set with Cayley tables:

*	0	а	b	С	•	0	а	b	С
0	0	0	С	b	0	0	0	0	0
а	а	0	С	b	а	0	0	0	0
b	b	b	0	С	b	0	0	b	С
С	С	С	b	0	C	0	0	С	b

Then *X* is an **IS**-algebra.

Every *p*-semisimple BCI-algebra gives an abelian group by defining x + y := x * (0 * y), and hence a **PS**-algebra leads to the ring structure. On the while, every ring gives a BCI-algebra by defining x * y := x - y and so we can construct an **IS**-algebra. This means that *the category of* **PS**-*algebras is equivalent to the category of rings*. In Example 2.1, we can see that $(a + b) + c = 0 \neq a = a + (b + c)$ if we define x + y := x * (0 * y). Hence the **IS**-*algebra is a generalization of the ring*.

730

LEMMA 2.2 [4, Proposition 1]. Let X be an **IS**-algebra. Then for any $x, y, z \in X$, we have

(i) 0x = x0 = 0,

(ii) $x \le y$ implies that $xz \le yz$ and $zx \le zy$.

A nonempty subset *A* of a semigroup $S(X) := (X, \cdot)$ is said to be *left* (respectively, *right*) *stable* [1] if $xa \in A$ (respectively, $ax \in A$) whenever $x \in S(X)$ and $a \in A$.

A nonempty subset *A* of an **IS**-algebra *X* is called a *left* (respectively, *right*) \mathcal{I} -*ideal* of *X* [7] if

(a₁) *A* is a left (respectively, right) stable subset of S(X),

(a₂) for any $x, y \in I(X)$, $x * y \in A$ and $y \in A$ imply that $x \in A$.

Note that {0} and *X* are left (respectively, right) \mathscr{I} -ideals. If *A* is a left (respectively, right) \mathscr{I} -ideal of an **IS**-algebra *X*, then $0 \in A$. Thus *A* is an ideal of I(X).

We now review some fuzzy logic concepts.

A *fuzzy set* in a set *X* is a function $\mu : X \to [0,1]$. For $t \in [0,1]$ the set $U(\mu;t) := \{x \in X \mid \mu(x) \ge t\}$ is called a *level subset* of μ .

A fuzzy set μ in a BCI-algebra *X* is called a *fuzzy ideal* of *X* if

(b₁) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(b₂) $\mu(x) \ge \min\{\mu(x \ast y), \mu(y)\}$ for all $x, y \in X$.

A fuzzy set μ in a semigroup $S(X) := (X, \cdot)$ is said to be *fuzzy left* (respectively, *fuzzy right*) *stable* [5] if $\mu(xy) \ge \mu(y)$ (respectively, $\mu(xy) \ge \mu(x)$) for all $x, y \in X$.

A fuzzy set μ in an **IS**-algebra *X* is called a *fuzzy left* (respectively, *fuzzy right*) *9-ideal* of *X* [3] if

(b₃) μ is a fuzzy left (respectively, fuzzy right) stable set in *S*(*X*),

(b₄) μ is a fuzzy ideal of a BCI-algebra *X*.

From now on, a (fuzzy) *I*-ideal shall mean a (fuzzy) left *I*-ideal.

3. Fuzzy associative *I*-ideals

DEFINITION 3.1 (see [8]). A nonempty subset *A* of an **IS**-algebra *X* is called a *left* (respectively, *right*) *associative* \mathcal{I} -*ideal* of *X* if

(a₁) A is a left (respectively, right) stable subset of S(X),

(a₃) for any $x, y, z \in I(X)$, $(x * y) * z \in A$ and $y * z \in A$ imply that $x \in A$.

We start with the fuzzification of a left (respectively, right) associative *I*-ideal.

DEFINITION 3.2. A fuzzy set μ in an **IS**-algebra *X* is called a *fuzzy left* (respectively, *fuzzy right*) *associative* \mathcal{I} -*ideal* of *X* if

(b₃) μ is a fuzzy left (respectively, fuzzy right) stable set in *S*(*X*),

(b₅) $\mu(x) \ge \min\{\mu((x * y) * z), \mu(y * z)\}$ for all $x, y, z \in X$.

In what follows, a (fuzzy) associative \mathcal{I} -ideal shall mean a (fuzzy) left associative \mathcal{I} -ideal.

EXAMPLE 3.3. Consider an **IS**-algebra $X = \{0, a, b, c\}$ with the following Cayley tables:

*	0	а	b	С			0	а	b	С
0	0	0	b	b	()	0	0	0	0
а	а	0	С	b	C	ı	0	а	0	а
b	b	b	0	0	l	6	0	0	b	b
С	с	b	а	0	(2	0	а	b	С

Define a fuzzy set μ in *X* by $\mu(0) = \mu(a) = 0.7$ and $\mu(b) = \mu(c) = 0.5$. Then μ is a fuzzy associative \mathcal{I} -ideal of *X*.

EXAMPLE 3.4. Consider an **IS**-algebra $X = \{0, a, b, c\}$ with Cayley tables as follows:

*	0	а	b	С	•	0	а	b	С
0	0	а	b	С	0	0	0	0	0
а	а	0	С	b	а	0	а	b	С
b	b	С	0	а	b	0	а	b	С
С	с	b	а	0	С	0	0	0	0

Let μ be a fuzzy set in X defined by $\mu(0) = t_0$, $\mu(a) = t_1$, $\mu(b) = \mu(c) = t_2$, where $t_0 > t_1 > t_2$ in [0, 1]. Then μ is a fuzzy associative \mathscr{I} -ideal of X.

We give a relation between a fuzzy associative \mathcal{I} -ideal and a fuzzy \mathcal{I} -ideal. To do this, we need the following lemma.

LEMMA 3.5 (see [3]). A fuzzy set μ in an **IS**-algebra X is a fuzzy \mathcal{F} -ideal of X if and only if it satisfies:

- (i) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$,
- (ii) $\mu(xy) \ge \mu(y)$ for all $x, y \in X$.

THEOREM 3.6. *Every fuzzy associative 9-ideal is a fuzzy 9-ideal.*

PROOF. Let μ be a fuzzy associative \mathscr{I} -ideal of an **IS**-algebra X and let $x, y \in X$. Then

$$\mu(x) \ge \min \{ \mu((x * y) * 0), \mu(y * 0) \} \text{ (by (b_5))}$$

= min { $\mu(x * y), \mu(y) \} \text{ (by (1)).}$ (3.1)

It follows from Lemma 3.5 that μ is a fuzzy \mathscr{I} -ideal of *X*.

The following example shows that the converse of Theorem 3.6 may not be true.

EXAMPLE 3.7. Let *X* be an **IS**-algebra in Example 3.3 and let μ be a fuzzy set in *X* defined by $\mu(0) = \mu(b) = 0.6$ and $\mu(a) = \mu(c) = 0.2$. It is routine to check that μ is a fuzzy \mathscr{F} -ideal of *X*. But μ is not a fuzzy associative \mathscr{F} -ideal of *X*, since

$$\mu(a) < \min\{\mu((a * b) * c), \mu(b * c)\}.$$
(3.2)

Now we find a condition for a fuzzy \mathscr{I} -ideal to be a fuzzy associative \mathscr{I} -ideal. Let μ be a fuzzy set in an **IS**-algebra *X* and consider the following inequality:

(b₆) $\mu(x) \ge \mu((x \ast y) \ast y)$ for all $x, y \in X$.

We know that, in general, a fuzzy \mathscr{I} -ideal of an **IS**-algebra *X* may not satisfy the condition (b₆). In fact, if we take the fuzzy \mathscr{I} -ideal μ in Example 3.7, then $\mu(a) = 0.2 < 0.6 = \mu((a * c) * c)$. But we have the following theorem.

THEOREM 3.8. Every fuzzy associative \mathscr{P} -ideal of an **IS**-algebra satisfies inequality (b_6).

PROOF. Let μ be a fuzzy associative \mathcal{I} -ideal of an **IS**-algebra X and let $x, y \in X$. Using (III) and (b₅), we get

$$\mu(x) \ge \min \{ \mu((x * y) * y), \mu(y * y) \}$$

= min { $\mu((x * y) * y), \mu(0) \}$
= $\mu((x * y) * y).$ (3.3)

This completes the proof.

It is natural to have the question: is a fuzzy set satisfying (b_6) a fuzzy \mathscr{I} -ideal? The following example provides a negative answer, and hence we know that the converse of Theorem 3.8 may not be true.

EXAMPLE 3.9. In Example 3.4, define a fuzzy set μ in X by $\mu(0) = \mu(a) = \mu(b) = 0.8$ and $\mu(c) = 0.5$. Then μ satisfies the condition (b₆), but μ is not a fuzzy \mathscr{I} -ideal and hence not a fuzzy associative \mathscr{I} -ideal of X.

THEOREM 3.10. If a fuzzy \mathscr{F} -ideal of an **IS**-algebra satisfies condition (b_6), then it is a fuzzy associative \mathscr{F} -ideal.

PROOF. Let μ be a fuzzy \mathscr{I} -ideal of an **IS**-algebra *X* satisfying condition (b₆). It is sufficient to show that μ satisfies condition (b₅). Notice that

$$((x*z)*z)*(y*z) = ((x*z)*(y*z))*z \le (x*y)*z$$
(3.4)

for all $x, y, z \in X$. It follows from (b₆) and Lemma 3.5(i) that

$$\mu(x) \ge \mu((x * z) * z) \ge \min \{\mu(((x * z) * z) * (y * z)), \mu(y * z)\} \ge \min \{\mu((x * y) * z), \mu(y * z)\}$$
(3.5)

for all $x, y, z \in X$. This completes the proof.

By Theorems 3.8 and 3.10, we have the following corollary.

COROLLARY 3.11. Let μ be a fuzzy \mathscr{G} -ideal of an **IS**-algebra X. Then μ is a fuzzy associative \mathscr{G} -ideal of X if and only if it satisfies condition (b_6).

PROPOSITION 3.12. Let μ be a fuzzy set in an **IS**-algebra. Then μ is a fuzzy associative \mathscr{I} -ideal of X if and only if the nonempty level set $U(\mu;t)$ of μ is an associative \mathscr{I} -ideal of X for every $t \in [0,1]$.

We then call $U(\mu; t)$ a *level associative* \mathcal{I} *-ideal* of μ .

EUN HWAN ROH ET AL.

PROOF. Suppose that μ is a fuzzy associative \mathscr{I} -ideal of X. Let $x \in S(X)$ and $y \in U(\mu;t)$. Then $\mu(y) \ge t$ and so $\mu(xy) \ge \mu(y) \ge t$, which implies that $xy \in U(\mu;t)$. Hence $U(\mu;t)$ is a stable subset of S(X). Let $x, y, z \in I(X)$ be such that $(x * y) * z \in U(\mu;t)$ and $y * z \in U(\mu;t)$. Then $\mu((x * y) * z) \ge t$ and $\mu(y * z) \ge t$. It follows from (b₅) that

$$\mu(x) \ge \min\{\mu((x*y)*z), \mu(y*z)\} \ge t$$
(3.6)

so that $x \in U(\mu;t)$. Hence $U(\mu;t)$ is an associative \mathscr{I} -ideal of X. Conversely, assume that the nonempty level set $U(\mu;t)$ of μ is an associative \mathscr{I} -ideal of X for every $t \in [0,1]$. If there are $x_0, y_0 \in S(X)$ such that $\mu(x_0y_0) < \mu(y_0)$, then by taking $t_0 := (1/2)(\mu(x_0y_0) + \mu(y_0))$ we have $\mu(x_0y_0) < t_0 < \mu(y_0)$. It follows that $y_0 \in U(\mu;t_0)$ and $x_0y_0 \notin U(\mu;t_0)$. This is a contradiction. Therefore μ is a fuzzy stable set in S(X). Suppose that $\mu(x_0) < \min\{\mu((x_0 * y_0) * z_0), \mu(y_0 * z_0)\}$ for some $x_0, y_0, z_0 \in X$. Putting $s_0 := (1/2)(\mu(x_0) + \min\{\mu((x_0 * y_0) * z_0), \mu(y_0 * z_0)\})$, then $\mu(x_0) < s_0 < \min\{\mu((x_0 * y_0) * z_0), \mu(y_0 * z_0)\}$, which shows that $(x_0 * y_0) * z_0 \in U(\mu;s_0), y_0 * z_0 \in U(\mu;s_0)$ and $x_0 \notin U(\mu;s_0)$. This is impossible. Thus μ satisfies the condition (b₅). This completes the proof.

Using Proposition 3.12, we can consider a generalization of Example 3.3 as follows.

PROPOSITION 3.13. Let A be an associative \mathcal{P} -ideal of an **IS**-algebra X and let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} t_0 & \text{if } x \in A, \\ t_1 & \text{otherwise,} \end{cases}$$
(3.7)

where $t_0 > t_1$ in [0,1]. Then μ is a fuzzy associative \mathscr{I} -ideal of X, and $U(\mu;t_0) = A$.

PROOF. Notice that

$$U(\mu;t) = \begin{cases} \emptyset & \text{if } t_0 < t, \\ A & \text{if } t_1 < t \le t_0, \\ X & \text{if } t \le t_1. \end{cases}$$
(3.8)

It follows from Proposition 3.12 that μ is a fuzzy associative \mathscr{I} -ideal of X. Clearly, we have $U(\mu; t_0) = A$.

Proposition 3.13 suggests that any associative \mathscr{I} -ideal of an **IS**-algebra *X* can be realized as a level associative \mathscr{I} -ideal of some fuzzy associative \mathscr{I} -ideal of *X*.

We now consider the converse of Proposition 3.13.

PROPOSITION 3.14. For a nonempty subset A of an **IS**-algebra X, let μ be a fuzzy set in X which is given in Proposition 3.13. If μ is a fuzzy associative \mathcal{I} -ideal of X, then A is an associative \mathcal{I} -ideal of X.

PROOF. Assume that μ is a fuzzy associative \mathscr{I} -ideal of X and let $x \in S(X)$ and $y \in A$. Then $\mu(xy) \ge \mu(y) = t_0$ and so $xy \in U(\mu; t_0) = A$. Hence A is a stable subset

of S(X). Let $x, y, z \in I(X)$ be such that $(x * y) * z \in A$ and $y * z \in A$. From (b₅) it follows that

$$\mu(x) \ge \min\{\mu((x*y)*z), \mu(y*z)\} = t_0 \tag{3.9}$$

so that $x \in U(\mu; t_0) = A$. This completes the proof.

The following theorem shows that the concept of a fuzzy associative \mathscr{I} -ideal of an **IS**-algebra is a generalization of an associative \mathscr{I} -ideal. The proof is straightforward by using Propositions 3.13 and 3.14.

THEOREM 3.15. Let A be a nonempty subset of an **IS**-algebra X and let μ be a fuzzy set in X such that μ is into {0,1}, so that μ is the characteristic function of A. Then μ is a fuzzy associative \mathfrak{F} -ideal of X if and only if A is an associative \mathfrak{F} -ideal of X.

References

- S. S. Ahn and H. S. Kim, A note on \$\mathcal{P}\$-ideals in BCI-semigroups, Commun. Korean Math. Soc. 11 (1996), no. 4, 895–902. CMP 1 434 849. Zbl 991.28396.
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29. MR 34#2433. Zbl 207.29304.
- [3] Y. B. Jun, S. S. Ahn, J. Y. Kim, and H. S. Kim, *Fuzzy &-ideals in BCI-semigroups*, Southeast Asian Bull. Math. 22 (1998), no. 2, 147–153. CMP 1 684 225. Zbl 917.06009.
- [4] Y. B. Jun, S. M. Hong, and E. H. Roh, *BCI-semigroups*, Honam Math. J. 15 (1993), no. 1, 59-64. MR 94j:20071.
- [5] Y. B. Jun and E. H. Roh, *Fuzzy p & I-ideals in IS-algebras*, J. Fuzzy Math. 7 (1999), no. 2, 473-480. CMP 1 697 775. Zbl 940.06015.
- [6] Y. B. Jun, E. H. Roh, and X. L. Xin, *I-ideals generated by a set in* IS-algebras, Bull. Korean Math. Soc. 35 (1998), no. 4, 615-624. MR 2000c:06038. Zbl 915.06012.
- [7] Y. B. Jun, X. L. Xin, and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24 (1998), no. 4, 309–321. MR 2000b:06056. Zbl 918.06011.
- [8] E. H. Roh, Y. B. Jun, and W. H. Shim, *Some ideals in IS-algebras*, Sci. Math. 2 (1999), no. 3, 315–320 (electronic). CMP 1 718 275.

EUN HWAN ROH: DEPARTMENT OF MATHEMATICS EDUCATION, CHINJU NATIONAL UNIVERSITY OF EDUCATION, CHINJU 660-765, KOREA

E-mail address: ehroh@ns.chinju-e.ac.kr

YOUNG BAE JUN: DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNI-VERSITY, CHINJU 660-701, KOREA

E-mail address: ybjun@nongae.gsnu.ac.kr

Wook Hwan Shim: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea