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Abstract. We will continue the study of p-closed spaces. This class of spaces is strictly
placed between the class of strongly compact spaces and the class of quasi-H-closed
spaces. We will provide new characterizations of p-closed spaces and investigate their
relationships with some other classes of topological spaces.
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1. Introduction and preliminaries. The aim of this paper is to continue the study
of p-closed spaces, which were introduced by Abo-Khadra [1]. A topological space
(X,τ) is called p-closed if every preopen cover of X has a finite subfamily whose
pre-closures cover X.
LetA be a subset of a topological space (X,τ). Following Kronheimer [13], we call the

interior of the closure ofA, denoted byA+, the consolidation ofA. Sets included in their
consolidation play a significant role in, e.g., questions concerning covering properties,
decompositions of continuity, etc. Such sets are called preopen [15] or locally dense [4].
A subset A of a space (X,τ) is called preclosed if its complement is preopen, i.e.,
if cl(intA) ⊆ A. The preclosure of A ⊆ X, denoted by pcl(A), is the intersection of
all preclosed supersets of A. Since any union of preopen sets is also preopen, the
preclosure of every set is preclosed. It is well known that pclA=A∪cl(intA) for any
A⊆X.
Another interesting property of preopen sets is the following: when a certain topo-

logical property is inherited by both open and dense sets, it is often then inherited by
preopen sets.
Several important concepts in topology are and can be defined in terms of pre-

open sets. Among the most well known are Bourbaki’s submaximal spaces (see [2]).
A topological space is called submaximal if every (locally) dense subset is open or,
equivalently, if every subset is locally closed, i.e., the intersection of an open set and a
closed set. Another class of spaces commonly characterized in terms of preopen sets
is the class of strongly irresolvable spaces introduced by Foran and Liebnitz in [9]. A
topological space (X,τ) is called strongly irresolvable [9] if every open subspace of X
is irresolvable, i.e., it cannot be represented as the disjoint union of two dense subsets.
Subspaces that contain two disjoint dense subsets are called resolvable. Ganster [10]
has pointed out that a space is strongly irresolvable if and only if every preopen set
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is semi-open, where a subset S of a space (X,τ) is called semi-open if S ⊆ cl(intS). We
will denote the families of preopen (respectively, semi-open) sets of a space (X,τ) by
PO(X) (respectively, SO(X)).
Many classical topological notions such as compactness and connectedness have

been extended by using preopen sets instead of open sets. Among them are the class
of strongly compact spaces [16] (= every preopen cover has a finite subcover) stud-
ied by Jankovíc, Reilly and Vamanamurthy [12] and by Ganster [11], and the class of
preconnected spaces (= spaces that cannot be represented as the disjoint union of
two preopen subsets) introduced by Popa [19]. The study of topological properties via
preopenness has gained significant importance in general topology and one example
for that is the fact that four (out of the ten) articles in the 1998 Volume of “Memoirs
of the Faculty of Science Kochi University Series A Mathematics” were more or less
devoted to preopen sets.
A point x ∈X is called a δ-cluster point of a set A [25] if A∩U �= ∅ for every regular

open set U containing x. The set of all δ-cluster points of A forms the δ-closure of A
denoted by clδ(A), and A is called δ-closed [25] if A= clδ(A). If A⊆ int(clδ(A)), then A
is said to be δ-preopen [21]. Complements of δ-preopen sets are called δ-preclosed and
the δ-preclosure of a set A, denoted by δ-pcl(A), is the intersection of all δ-preclosed
supersets of A.
Following [22], we will call a topological space (X,τ) δp-closed if for every δ-preopen

cover {Vα : α ∈ A} of X, there exists a finite subset A0 of A such that X = ∪{δ−
pcl(Vα) :α∈A0}.

2. p-closed spaces

Definition 2.1. A topological space (X,τ) is said to be p-closed [1] (respectively,
quasi-H-closed = QHC) if for every preopen (respectively, open) cover {Vα :α∈A} of
X, there exists a finite subset A0 of A such that X =∪{pcl(Vα) :α∈A0} (respectively,
X =∪{cl(Vα) :α∈A0}).
It is clear that every strongly compact space is p-closed, and that every p-closed

space is QHC. We also observe that a space (X,τ) is QHC if and only if every preopen
cover has a finite dense subsystem (= finite subfamily whose union is a dense subset).
Since every preopen set is δ-preopen, we have δ-pclS ⊆ pclS for every S ⊆ X. This
implies that every δp-closed space is p-closed.

Theorem 2.2. Let (X,τ) be QHC and strongly irresolvable. Then (X,τ) is p-closed.

Proof. Let {Si : i ∈ I} be any preopen cover of X. Since X is QHC, there exists a
finite subset A of I such that X = ∪{cl(Si) : i ∈ A}. Since X is strongly irresolvable,
Si ∈ SO(X) and therefore cl(Si) = cl(int(Si)) = pcl(Si) for each i ∈ I. Hence X is p-
closed.

Corollary 2.3. Let (X,τ) be strongly irresolvable (or submaximal). Then (X,τ) is
p-closed if and only if it is QHC.

Observe that a p-closed space need not be strongly irresolvable as any finite indis-
crete space shows. However, we do have the following result.
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Theorem 2.4. Let (X,τ) be a p-closed T0 space. Then (X,τ) is strongly irresolvable.

Proof. Suppose that W is a nonempty, open, and resolvable subspace of X. Then
W is dense-in-itself and also infinite, since (X,τ) is T0. Let W = E1∪E2, where E1 and
E2 are disjoint dense subsets of W , and, without loss of generality, we may assume
that E1 is infinite. Moreover, let A = {x ∈ E1 : {x} ∈ PO(X)}. Observe that for each
y ∈ E1 \A, {y} is nowhere dense. Now pick y ∈ E1 \A. If Sy = (X \W)∪E2 ∪{y}
then Sy is dense and therefore preopen. If G is a nonempty open set contained in Sy ,
then G∩E1 ⊆ {y} and so G∩W ⊆ cl(E1) ⊆ cl{y}. Since {y} is nowhere dense, G∩W
is empty and so cl(int(Sy)) ⊆ X \W , thus pclSy = Sy . Now, observe that {{x} : x ∈
A}∪{Sy :y ∈ E1 \A} is a preopen cover of X. Hence there exists a finite subset A1 of
A and a finite subset A2 of E1 \A such that X = {{x} : x ∈ A1}∪{Sy : y ∈ A2}. Then,
E1 ⊆A1∪A2 which is a contradiction. Thus X is strongly irresolvable.

By combining the previous two results we immediately have the following theorem.

Theorem 2.5. Let (X,τ) be a T0 space. Then (X,τ) is p-closed if and only if (X,τ)
is QHC and strongly irresolvable.

The following diagram exhibits the relationships between the class of p-closed
spaces and some related classes of topological spaces. Note that none of the implica-
tions is reversible

strongly compact ��

��

p-closed

��������������������������� δp-closed��

α-compact �� compact �� nearly compact �� QHC.

semi-compact

��

�� s-closed ��

������������
S-closed

������������

(2.1)

Example 2.6. (i) Recall that a space (X,τ) is called α-scattered [7] if it has a dense
set of isolated points. Clearly every α-scattered space is strongly irresolvable and so,
by Theorem 2.2, every α-scattered QHC space is p-closed. In particular, the Katetov
extension κN of the set of natural numbers N (cf. [20]) is p-closed and not compact,
hence not strongly compact.
(ii) The unit interval [0,1] with the usual topology is compact, hence QHC, but not

p-closed since it is resolvable.
(iii) Let X =R, τ = {∅,{0},X}. Then, X is p-closed and s-closed but not α-compact

and hence not strongly compact (a space isα-compact if every cover byα-open sets has
a finite subcover, where a set is α-open if it is the difference of an open and a nowhere
dense set; clearly every α-open set is preopen but not vice versa). Additionally, this
space is not δp-closed since every subset is δ-preopen.
We next discuss the relationship between p-closedness and compactness. Recall

that a space (X,τ) is called nearly compact [24] if every cover of X by regular open
sets has a finite subcover, i.e., the semiregularization (X,τs) of (X,τ) is compact.
Example 4.8(d) in [20] shows that there exists a Hausdorff, non-compact, semi-regular
and QHC space with a dense set of isolated points. Such a space is p-closed but not
nearly compact. Example 2.10 in [22] provides another such example.
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For any infinite cardinal κ, a topological space (X,τ) is called κ-extremally discon-
nected (= κ-e.d.) [6] if the boundary of every regular open set has cardinality (strictly)
less than κ. Several topological spaces share this property for κ = ℵ0. Since there are
finite spaces which fail to be extremally disconnected, clearly ℵ0-extremal disconnect-
edness is a strictly weaker property than extremal disconnectedness.

Theorem 2.7. If a topological space (X,τ) is p-closed and ℵ0-extremally discon-
nected (respectively, extremally disconnected), then (X,τ) is nearly compact (respec-
tively, s-closed).

Proof. We first prove the case when the space is ℵ0-extremally disconnected. Let
{Ai : i ∈ I} be any regular open cover of X. For each i ∈ I, we have pcl(Ai) = Ai∪
cl(int(Ai)) = cl(Ai). Since X is p-closed, then there exists a finite F ⊆ I such that
X =∪i∈F cl(Ai). Note that for each Ai, we have cl(Ai)= Bi∪Ci, where Bi = int(cl(Ai))
and Ci = cl(Ai)\ int(cl(Ai)). Since X is ℵ0-extremally disconnected, then Ci is finite
for each i∈ F . Since Bi =Ai, for each i∈ F , then ∪i∈FAi covers X but a finite amount.
Hence, X is nearly compact. The proof of the second part of the theorem is similar to
the first one and hence omitted.

On the other hand (cf. [20, page 450]) there exist dense-in-itself, compact and ex-
tremally disconnected Hausdorff spaces. Such spaces are resolvable and hence cannot
be p-closed.
A filter base � on a topological space (X,τ) is said to pre-θ-converge to a point

x ∈ X if for each V ∈ PO(X,x), there exists F ∈ � such that F ⊆ pcl(V). A filter base
� is said to pre-θ-accumulate at x ∈ X if pcl(V)∩F �= ∅ for every V ∈ PO(X,x) and
every F ∈�. The preinterior of a set A, denoted by pint(A), is the union of all preopen
subsets of A.

Theorem 2.8. For a topological space (X,τ) the following conditions are equivalent:
(a) (X,τ) is p-closed,
(b) every maximal filter base pre-θ-converges to some point of X,
(c) every filter base pre-θ-accumulates at some point of X,
(d) for every family {Vα : α∈A} of preclosed subsets such that ∩{Vα : α∈A} =∅,

there exists a finite subset A0 of A such that ∩{pint(Vα) :α∈A0} =∅.

Proof. (a)⇒(b). Let � be a maximal filter base on X. Suppose that � does not pre-
θ-converge to any point of X. Since � is maximal, � does not pre-θ-accumulate at any
point of X. For each x ∈ X, there exist Fx ∈� and Vx ∈ PO(X,x) such that pcl(Vx)∩
Fx =∅. The family {Vx : x ∈X} is a cover ofX by preopen sets ofX. By (a), there exists
a finite number of points x1,x2, . . . ,xn of X such that X =∪{pcl(Vxi) : i= 1,2, . . . ,n}.
Since � is a filter base on X, there exists F0 ∈� such that F0 ⊆ ∩{Fxi : i = 1,2, . . . ,n}.
Therefore, we obtain F0 =∅. This is a contradiction.
(b)⇒(c). Let� be any filter base onX. Then, there exists a maximal filter base�0 such

that�⊆�0. By (b),�0 pre-θ-converges to some point x ∈X. For every F ∈� and every
V ∈ PO(X,x), there exists F0 ∈�0 such that F0 ⊆ pcl(V); hence∅ �= F0∩F ⊆ pcl(V)∩F .
This shows that � pre-θ-accumulates at x.
(c)⇒(d). Let {Vα : α ∈ A} be any family of preclosed subsets of X such that
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∩{Vα : α ∈ A} = ∅. Let Γ(A) denote the ideal of all finite subsets of A. Assume that
∩{pint(Vα) : α ∈ γ} �= ∅ for every γ ∈ Γ(A). Then, the family � = {∩α∈γ pint(Vα) :
γ ∈ Γ(A)} is a filter base on X. By (c), � pre-θ-accumulates at some point x ∈ X.
Since {X \Vα : α ∈ A} is a cover of X, x ∈ X \Vα0 for some α0 ∈ A. Therefore, we
obtain X \Vα0 ∈ PO(X,x), pint(Vα0) ∈ � and pcl(X \Vα0)∩pint(Vα0) = ∅. This is a
contradiction.
(d)⇒(a). Let {Vα :α∈A} be a cover ofX by preopen sets ofX. Then {X\Vα :α∈A} is

a family of preclosed subsets of X such that ∩{X \Vα :α∈A} =∅. By (d), there exists
a finite subset A0 of A such that ∩{pint(X \Vα) :α∈A0} =∅; hence X =∪{pcl(Vα) :
α∈A0}. This shows that X is p-closed.

Definition 2.9. A topological space (X,τ) is said to be strongly p-regular (respec-
tively, p-regular [8], almost p-regular [14]) if for each point x ∈X and each preclosed
set (respectively, closed set, regular closed set) F such that x �∈ F , there exist disjoint
preopen sets U and V such that x ∈U and F ⊆ V .

Theorem 2.10. If a topological space X is p-closed and strongly p-regular (respec-
tively, p-regular, almost p-regular), then X is strongly compact (respectively, compact,
nearly compact).

Proof. We prove only the case of p-regular spaces. Let X be a p-closed and p-
regular space. Let {Vα : α ∈ A} be any open cover of X. For each x ∈ X, there exists
an α(x) ∈ A such that x ∈ Vα(x). Since X is p-regular, there exists U(x) ∈ PO(X)
such that x ∈ U(x) ⊆ pcl(U(x)) ⊆ Vα(x) [8, Theorem 3.2]. Then, {U(x) : x ∈ X} is
a preopen cover of the p-closed space X and hence there exists a finite amount of
points, say, x1,x2, . . . ,xn such that X =∪n

i=1 pcl(U(xi))=∪n
i=1Vα(xi). This shows that

X is compact.

3. p-closed subspaces. Recall that a topological space (X,τ) is called hypercon-
nected if every open subset of X is dense. In the opposite case, X is called hyperdis-
connected. A set A is called semi-regular [5] if it is both semi-open and semi-closed.
Di Maio and Noiri [5] have shown that a set A is semi-regular if and only if there exists
a regular open set U with U ⊆A⊆ cl(U). Cameron [3] used the term regular semi-open
for a semi-regular set.

Lemma 3.1 (Mashhour et al. [17]). Let A and B be subsets of a topological space
(X,τ).
(1) If A∈ PO(X) and B ∈ SO(X), then A∩B ∈ PO(B).
(2) If A∈ PO(B) and B ∈ PO(X), then A∈ PO(X).
Lemma 3.2. Let B ⊆A⊆X and A∈ SO(X). Then, pclA(B)⊆ pclX(B).
Theorem 3.3. If every proper semi-regular subspace of a hyperdisconnected topo-

logical space (X,τ) is p-closed, then X is also p-closed.

Proof. Since (X,τ) is not hyperconnected, then there exists a proper semi-regular
set A. Let {Ai}i∈I be any preopen cover of X. Since A is semi-open, then by Lemma 3.1
Ai∩A= Bi ∈ PO(A,τ |A). Then {Bi}i∈I is a preopen cover of the p-closed space (A,τ |
A). Then, there exists a finite subset F of I such that A=∪i∈F pclA(Bi)⊆∪i∈F pcl(Bi)
(by Lemma 3.2). Therefore, we have A⊆∪i∈F pcl(Ai). Since A is semi-regular, X \A is
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also semi-regular and by a similar argument we can find a finite subsetG of I such that
X \A⊆∪i∈Gpcl(Ai). Hence, X =∪i∈F∪Gpcl(Ai). This shows that X is p-closed.

Theorem 3.4. If there exists a proper semi-regular subset A of a topological space
(X,τ) such that A and X \A are p-closed subspaces, then X is also p-closed.

Proof. The proof is similar to the one of Theorem 3.3 and hence omitted.

Lemma 3.5. Let A⊆ B ⊆X and B ∈ PO(X). If A∈ PO(B), then pcl(A)⊆ pclB(A).
Theorem 3.6. If (X,τ) is a p-closed spaces and A is preregular (i.e., both preopen

and preclosed), then (A,τ |A) is also p-closed (as a subspace).

Proof. Let {Ai}i∈I be any preopen cover of (A,τ | A). By Lemma 3.1, Ai ∈ PO(X)
for each i ∈ I and {Ai : i ∈ I}∪ (X \A) = X. Since X is p-closed, there exists a finite
subset F of I such thatX = (∪i∈F pclX(Ai))∪(X\A); henceA⊂∪i∈F pclX(Ai). For each
i ∈ F , we have by Lemma 3.5, pclX(Ai) ⊆ pclA(Ai) and A = ∪i∈F pclA(Ai). Therefore,
A is a p-closed subspace.

Example 3.7. An open, even a δ-open subset of a p-closed space need not be p-
closed (as a subspace). Consider any infinite set X with the point excluded topology.
Since the only preopen set containing the excluded point is the whole space X, then
the space in question is p-closed. However, the (infinite) set of isolated points of X is
not p-closed.

4. Sets which are p-closed relative to a space. A subset S of a topological space
(X,τ) is said to be p-closed relative to X if for every cover {Vα :α∈A} of S by preopen
subsets of (X,τ), there exists a finite subsetA0 ofA such that S ⊂∪{pcl(Vα) :α∈A0}.
Theorem 4.1. For a topological space (X,τ) the following conditions are equivalent:
(a) S is p-closed relative to X,
(b) every maximal filter base on X which meets S pre-θ-converges to some point

of S,
(c) every filter base on X which meets S pre-θ-accumulates at some point of S,
(d) for every family {Vα : α ∈ A} of preclosed subsets of (X,τ) such that [∩{Vα :

α∈A}]∩S =∅, there exists a finite subset A0 of A such that [∩{pint(Vα) :α∈
A0}]∩S =∅.

A point x ∈ X is said to be a pre-θ-accumulation point of a subset A of a topo-
logical space (X,τ) if pcl(U)∩A �= ∅ for every U ∈ PO(X,x). The set of all pre-θ-
accumulation points of A is called the pre-θ-closure of A and is denoted by pclθ(A).
A subset A of a topological space (X,τ) is said to be pre-θ-closed if pclθ(A)=A. The
complement of a pre-θ-closed set is called pre-θ-open.

Proposition 4.2. Let A be a subset A of a topological space (X,τ). Then:
(i) If A∈ PO(X), then pcl(A)= pclθ(A).
(ii) If A is preregular, then A is pre-θ-closed.
(iii) If A∈ SO(X), then pcl(A)= cl(A).
Theorem 4.3. If X is a p-closed space, then every pre-θ-open cover of X has a finite

subcover.
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Proof. Let {Vα : α ∈ A} be any cover of X by pre-θ-open subsets of X. For each
x ∈ X, there exists α(x) ∈ A such that x ∈ Vα(x). Since Vα(x) is pre-θ-open, there
exists Vx ∈ PO(X) such that x ∈ Vx ⊆ pcl(Vx) ⊆ Vα(x). The family {Vx : x ∈ X} is a
preopen cover of X. Since X is p-closed, there exists a finite number of points, say,
x1,x2, . . . ,xn in X such that X =∪{pcl(Vxi) : i= 1,2, . . . ,n}. Therefore, we obtain that
X =∪{Vα(xi) : i= 1,2, . . . ,n}.
Question 4.4. Is the converse in Theorem 4.3 true?

Theorem 4.5. Let A, B be subsets of a space X. If A is pre-θ-closed and B is p-closed
relative to X, then A∩B is p-closed relative to X.

Proof. Let {Vα :α∈A} be any cover of A∩B by preopen subsets of X. Since X \A
is pre-θ-open, for each x ∈ B\A there existsWx ∈ PO(X,x) such that pcl(Wx)⊆X \A.
The family {Wx : x ∈ B \A}∪{Vα : α ∈ A} is a cover of B by preopen sets of X. Since
B is p-closed relative to X, there exist a finite number of points, say, x1,x2, . . . ,xn in
B \A and a finite subset A0 of A such that

B ⊆ [∪n
i=1 pcl

(
Wxi

)]∪[∪α∈A0 pcl
(
Vα
)]
. (4.1)

Since pcl(Wxi)∩A = ∅ for each i, we obtain that A∩B ⊆ ∪{pcl(Vα) : α ∈ A0}. This
shows that A∩B is p-closed relative to X.
Corollary 4.6. If K is pre-θ-closed set of a p-closed space (X,τ), then K is p-closed

relative to X.

Question 4.7. If in a topological space (X,τ) every proper pre-θ-closed set is p-
closed relative to X, is X necessarily p-closed?

A topological space (X,τ) is called preconnected [19] ifX cannot be expressed as the
union of two disjoint preopen sets. In the opposite case, X is called predisconnected.
Note that every preconnected space is irresolvable but not vice versa.

Theorem 4.8. Let X be a predisconnected space. Then X is p-closed if and only if
every preregular subset of X is p-closed relative to X.

Proof

Necessity. Every preregular set is pre-θ-closed by Proposition 4.2. Since X is p-
closed, the proof is completed by Corollary 4.6.

Sufficiency. Let {Vα :α∈A} be a preopen cover ofX. SinceX is predisconnected,
there exists a proper preregular subset A of X. By our hypothesis, A and X \A are p-
closed relative to X. There exist finite subsets A1 and A2 of A such that

A⊆∪α∈A1 pcl
(
Vα
)
, X \A⊆∪α∈A2 pcl

(
Vα
)
. (4.2)

Therefore, we obtain that X =∪{pcl(Vα) :α∈A1∪A2}.
Theorem 4.9. If there exists a proper preregular subset A of a topological space

(X,τ) such that A and X \A are p-closed relative to X, then X is p-closed.

Proof. This proof is similar to the one of Theorem 4.8 and hence omitted.
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Theorem 4.10. Let X0 be a semi-open subset of a topological space (X,τ). If X0 is
a p-closed space, then it is p-closed relative to X.

Proof. Let {Vα : α ∈ A} be any cover of X0 by preopen subsets of X. Since X0 ∈
SO(X), by Lemma 3.1, we have that X0∩Vα =Wα ∈ PO(X0) for each α∈A. Therefore,
{Wα :α∈A} is a preopen cover of X0. since X0 is p-closed, there exists a finite subset
A0 of A such that X0 = ∪{pclX0(Wα) : α ∈ A0}. By Lemma 3.2, we obtain that X0 ⊆
∪{pcl(Wα) : α ∈ A0} ⊆ ∪{pcl(Vα) : α ∈ A0}. This shows that X0 is p-closed relative
to X.

Theorem 4.11. Let X0 be a preopen subset of a topological space (X,τ). If X0 is a
p-closed relative to X, then it is a p-closed subspace of X.

Proof. Let {Vα : α ∈ A} be any cover of X0 by preopen subsets of X0. Since X0 ∈
PO(X), by Lemma 3.1, Vα ∈ PO(X) for each α ∈ A. Since X0 is p-closed relative to
X, there exists a finite subset A0 of A such that X0 ⊆ ∪ {pcl(Vα) : α ∈ A0}. Since
X0 ∈ PO(X), by Lemma 3.5 we obtain X0 =∪{pclX0(Vα) :α∈A0}. This shows that X0
is a p-closed subspace of X.

Corollary 4.12. Let X0 be an (α-)open subset of a topological space (X,τ). Then
X0 is a p-closed subspace of X if and only if it is p-closed relative to X.

Proof. This is an immediate consequence of Theorems 4.10 and 4.11.

Recall that a function f : (X,τ) → (Y ,σ) is called preirresolute [23] (respectively,
precontinuous [15]) if f−1(V) is preopen in X for every preopen (respectively, open)
subset V of Y .

Lemma 4.13 (see [18]). A function f : (X,τ)→ (Y ,σ) is preirresolute (respectively,
precontinuous) if and only if for each subset A of X, f(pcl(A)) ⊆ pcl(f (A)) (respec-
tively, f(pcl(A))⊆ cl(f (A))).
Theorem 4.14. If a function f : (X,τ)→ (Y ,σ) is a preirresolute (respectively, pre-

continuous) surjection and K is p-closed relative to X, then f(K) is p-closed (respec-
tively, QHC) relative to Y .

Proof. Let {Vα :α∈A} be any cover of f(K) by preopen (respectively, open) sub-
sets of Y . Since f is preirresolute (respectively, precontinuous), {f−1(Vα) : α ∈ A}
is a cover of K by preopen subsets of X, where K is p-closed relative to X. There-
fore, there exists a finite subset A0 of A such that K ⊆∪α∈A0 pcl(f−1(Vα)). Since f is
preirresolute (respectively, precontinuous) and surjective, by Lemma 4.13, we have

f(K)⊆∪α∈A0 f
(
pcl
(
f−1

(
Vα
)))⊆∪α∈A0 pcl

(
Vα
)

(
respectively, f(K)⊆∪α∈A0f

(
pcl
(
f−1

(
Vα
)))⊆∪α∈A0 cl

(
Vα
))
.

(4.3)

Corollary 4.15. If a function f : (X,τ) → (Y ,σ) is a preirresolute (respectively,
continuous) surjection and X is p-closed, then Y is p-closed (respectively, QHC).

Corollary 4.16. (i) The property “p-closed” is topological.
(ii) If the product space

∏
α∈AXα is p-closed, then Xα is p-closed for each α∈A.
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Remark 4.17. Even finite product of p-closed spaces need not be p-closed; for
consider the product of the space from Example 2.6(i) with any two point indiscrete
space. This product space shows that [1, Theorem 3.4.3] is wrong, i.e., every proper
preregular subset might be p-closed relative to the space and still the space might fail
to be p-closed. Additionally, [1, Example 3.4.1] is also false.

Acknowledgement. Research is supported partially by the Ella and Georg
Ehrnooth Foundation at Merita Bank, Finland and by the Japan-Scandinavia Sasakawa
Foundation.

References

[1] Abd El-Aziz Abo-Khadra, On generalized forms of compactness, Master’s thesis, Faculty
of Science, Tanta University, Egypt, 1989.
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