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QUADRATIC FUNCTIONAL EQUATIONS OF PEXIDER TYPE
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Abstract. First, the quadratic functional equation of Pexider type will be solved. By ap-
plying this result, we will also solve some functional equations of Pexider type which are
closely associated with the quadratic equation.
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1. Introduction. It is easy to see that the quadratic function f(x)= x2 is a solution
of each of the following functional equations

f(x+y)+f(x−y)= 2f(x)+2f(y), (1.1)

f(x+y+z)+f(x)+f(y)+f(z)= f(x+y)+f(y+z)+f(z+x), (1.2)

f(x−y−z)+f(x)+f(y)+f(z)= f(x−y)+f(y+z)+f(z−x), (1.3)

f(x+y+z)+f(x−y+z)+f(x+y−z)+f(−x+y+z)
= 4f(x)+4f(y)+4f(z). (1.4)

So, it is natural that each equation is called a quadratic functional equation. In par-
ticular, every solution of the “original” quadratic functional equation (1.1) is said to
be a quadratic function.
It is well known that a function f between real vector spaces is quadratic if and only

if there exists a unique symmetric biadditive function B such that f(x)= B(x,x) for
all x (see [1, 2, 3, 6, 7]).
The functional equation (1.2) was first solved by Kannappan. In fact, he proved that

a functional on a real vector space is a solution of (1.2) if and only if there exist a
symmetric biadditive function B and an additive functionA such that f(x)= B(x,x)+
A(x) for anyx (see [6]), while the author investigated, in [4, 5], the stability problems of
(1.2) and (1.3) on restricted domains and applied the result to the study of asymptotic
behaviors of the quadratic functions. Moreover, the quadratic functional equation (1.2)
was “pexiderized” and solved by Kannappan (see [6]).
The functional equation (1.2) is different from (1.3), and (1.4) in a sense that every

non-zero additive function is a solution of (1.2), but it is not a solution of either (1.3)
or (1.4).
In Section 2, we will show that each of the functional equations (1.1), (1.3), and (1.4)

is equivalent to the other. The general solutions of the quadratic functional equation
of Pexider type,
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f1(x+y)+f2(x−y)= 2f3(x)+2f4(y), (1.5)

will be investigated in Section 3. In Sections 4 and 5, the result of Section 3 will be
applied to the study of the general solutions of the functional equations

f1(x−y−z)+f2(x)+f3(y)+f4(z)= f5(x−y)+f6(y+z)+f7(z−x), (1.6)

f1(x+y+z)+f2(x−y+z)+f3(x+y−z)+f4(−x+y+z)
= 4f5(x)+4f6(y)+4f7(z) (1.7)

which are “pexiderized” forms of (1.3) and (1.4).

2. Solutions of equations (1.3) and (1.4). It is a natural thing to expect that both the
functional equations (1.3) and (1.4) are equivalent to the “original” quadratic equation
(1.1). In fact, it is so as we shall see in the following theorem.

Theorem 2.1. Let X and Y be vector spaces over fields of characteristic different
from 2, respectively. If f :X → Y satisfies the functional equations (1.1), (1.3), and (1.4),
then each of the equations (1.1), (1.3), and (1.4) is equivalent to the other.

Proof. First, we will prove the equivalence of (1.1) and (1.3). Suppose (1.3) holds.
If we put x = y = z = 0 in (1.3), we get f(0) = 0. By putting y = z = 0 in (1.3) we see
that every solution of (1.3) is even.
Replacing z by −y in (1.3) and using the evenness of f and f(0)= 0, we can trans-

form (1.3) into (1.1).
Conversely, assume a function f : X → Y is a solution of (1.1). Clearly, we see that

f(0)= 0, f is even,

f(y)+f(z)= 2f
(
y+z
2

)
+2f

(
y−z
2

)
, f

(
x
2

)
= 1
4
f(x). (2.1)

So,

f(x−y−z)+f(x)+f(y)+f(z)= 2f
(
x− y+z

2

)
+2f

(
y−z
2

)
+4f

(
y+z
2

)

= f(x−y)+f(x−z)+f(y+z).
(2.2)

This implies the equivalence of the functional equations (1.1) and (1.3).
It remains to prove the equivalence of (1.1) and (1.4). If we put x = y = z = 0 in

(1.4), we get f(0)= 0. By putting y = z = 0 in (1.4), we see that every solution of (1.4)
is even. By putting z = 0 in (1.4) and using the evenness of f and f(0) = 0, we can
transform (1.4) into (1.1).
Now, suppose a function f : X → Y satisfies (1.1) for all x,y,z ∈ X. Then f is even.

Hence, we get

f(x+y+z)+f(x−y+z)+f(x+y−z)+f(−x+y+z)
= 2f(x+z)+2f(y)+2f(x−z)+2f(y)= 2(2f(x)+2f(z))+4f(y). (2.3)

This means the equivalence of (1.1) and (1.4).
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3. Solutions of equation (1.5). In the following theorem, we will find out the gen-
eral solutions of the functional equation (1.5) which is a “pexiderized” form of the
quadratic functional equation (1.1). This result will be applied to the proofs of The-
orems 4.1 and 5.1 in which the quadratic functional equations of Pexider type, (1.6)
and (1.7), are solved.

Theorem 3.1. Let X and Y be vector spaces over fields of characteristic different
from 2, respectively. The functions f1,f2,f3,f4 : X → Y satisfy the functional equation
(1.5) for all x,y ∈ X if and only if there exist a quadratic function Q : X → Y , additive
functions a1,a2 :X → Y , and constants c1,c2,c3,c4 ∈ Y such that

f1(x)=Q(x)+a1(x)+a2(x)+c1,
f2(x)=Q(x)+a1(x)−a2(x)+c2,
f3(x)=Q(x)+a1(x)+c3,
f4(x)=Q(x)+a2(x)+c4

(3.1)

with

c1+c2 = 2c3+2c4. (3.2)

Proof. We first assume that f1,f2,f3,f4 are solutions of the functional equation
(1.5). If we define ci = fi(0), then we can verify by putting x = y = 0 in (1.5) that the
relation (3.2) is true.
We now define Fi(x)= fi(x)−ci and denote by Fei and Foi the even part and the odd

part of Fi (i= 1,2,3,4).
Clearly, F1,F2,F3,F4 are solutions of (1.5). By replacing x and y by −x and −y in

(1.5) for the Fi’s and then adding (subtracting) the resulting equation to (from) the
original equation (1.5), we have

Fe1(x+y)+Fe2(x−y)= 2Fe3(x)+2Fe4(y),
Fo1 (x+y)+Fo2 (x−y)= 2Fo3 (x)+2Fo4 (y).

(3.3)

By putting y = 0, x = 0, y = x, and y =−x in (3.3) separately, we get

Fe1(x)+Fe2(x)= 2Fe3(x), Fo1 (x)+Fo2 (x)= 2Fo3 (x), (3.4)

Fe1(x)+Fe2(x)= 2Fe4(x), Fo1 (x)−Fo2 (x)= 2Fo4 (x), (3.5)

Fe1(2x)= 2Fe3(x)+2Fe4(x), Fo1 (2x)= 2Fo3 (x)+2Fo4 (x), (3.6)

Fe2(2x)= 2Fe3(x)+2Fe4(x), Fo2 (2x)= 2Fo3 (x)−2Fo4 (x). (3.7)

From (3.4) and (3.5) we obtain Fe3 = Fe4 . Similarly, by (3.6) and (3.7) we may conclude
that Fe1 = Fe2 . Applying these facts to (3.3) and putting y = 0 in the resulting equation,
we see that there exists a quadratic function Q :X → Y with

Fe1 = Fe2 = Fe3 = Fe4 =Q. (3.8)

By the second equations in (3.4) and (3.5) we have

Fo1 = Fo3 +Fo4 , Fo2 = Fo3 −Fo4 . (3.9)
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From the second equations in (3.6) and (3.7) and from (3.9) it follows that

Fo3 (2x)+Fo4 (2x)= 2Fo3 (x)+2Fo4 (x),
Fo3 (2x)−Fo4 (2x)= 2Fo3 (x)−2Fo4 (x).

(3.10)

By the last two equations in (3.10) we get

Fo3 (2x)= 2Fo3 (x), Fo4 (2x)= 2Fo4 (x). (3.11)

By using (3.9) and the second equation in (3.3), we obtain

Fo3 (x+y)+Fo4 (x+y)+Fo3 (x−y)−Fo4 (x−y)= 2Fo3 (x)+2Fo4 (y). (3.12)

If we replace y in (3.12) by −y and if we add the resulting equation to (3.12), then by
(3.11) we get

Fo3 (x+y)+Fo3 (x−y)= Fo3 (2x), (3.13)

that is, Fo3 is an additive function, say

Fo3 = a1, (3.14)

where a1 :X → Y is an additive function. By (3.11) and (3.12) we may conclude that Fo4
is also additive, say

Fo4 = a2, (3.15)

where a2 :X → Y is an additive function.
Consequently, the relations in (3.1) are true in view of the equations in (3.8), (3.9),

(3.14), and (3.15).
Conversely, if there exist a quadratic function Q : X → Y , additive functions a1,a2 :

X → Y , and constants c1,c2,c3,c4 ∈ Y with the relations in (3.1) and (3.2), we may
easily check that the fi’s satisfy (1.5).

4. Solutions of equation (1.6). In this section, we will solve the functional equation
(1.6) which is a “pexiderized” form of (1.3).

Theorem 4.1. Let X and Y be vector spaces over fields of characteristic different
from 2, respectively. The functions fi : X → Y (i= 1, . . . ,7) satisfy the functional equa-
tion (1.6) if and only if there exist a quadratic function Q : X → Y , constants ci ∈ Y
(i= 1, . . . ,7), and additive functions ai :X → Y (i= 1, . . . ,4) such that

f1(x)=Q(x)+a1(x)−a2(x)−a3(x)+c1,
f2(x)=Q(x)−a1(x)+2a3(x)+a4(x)+c2,
f3(x)=Q(x)+a1(x)−a4(x)+c3,
f4(x)=Q(x)+a1(x)+a2(x)−a3(x)+c4,
f5(x)=Q(x)+a4(x)+c5,
f6(x)=Q(x)+a2(x)+a3(x)+c6,
f7(x)=Q(x)+a2(x)−a3(x)+c7

(4.1)
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with

c1+c2+c3+c4 = c5+c6+c7. (4.2)

Proof. First, assume that the fi’s are solutions of (1.6). Define ci = fi(0) for i =
1, . . . ,7. Putting x =y = z = 0 in (1.6) yields relation (4.2). For i= 1, . . . ,7 define Fi(x)=
fi(x)−ci for all x ∈ X. Then we have Fi(0) = 0 for i = 1, . . . ,7. It follows from (1.6)
and (4.2) that the Fi’s satisfy (1.6).
Denote by Fei (x) and F

o
i (x) the even part and the odd part of Fi(x), respectively. If

we replace x, y , z in (1.6) by −x, −y , −z, respectively, and if we add (subtract) the
resulting equation to (from) (1.6), we see that the Foi ’s as well as the F

e
i ’s also satisfy

(1.6).
We now consider (1.6) for the Foi ’s:

Fo1 (x−y−z)+Fo2 (x)+Fo3 (y)+Fo4 (z)= Fo5 (x−y)+Fo6 (y+z)+Fo7 (z−x). (4.3)

We note that Foi (0) = 0 and Foi (−x) = −Foi (x) for i = 1, . . . ,7 and for all x in X. If we
put x = 0 in (4.3), then we have

−Fo1 (y+z)+Fo3 (y)+Fo4 (z)=−Fo5 (y)+Fo6 (y+z)+Fo7 (z) (4.4)

or

(
Fo1 +Fo6

)
(y+z)= (Fo3 +Fo5 )(y)+(Fo4 −Fo7 )(z) (4.5)

which is the Pexider equation—so that

Fo1 +Fo6 = Fo3 +Fo5 = Fo4 −Fo7 = a1, (4.6)

where a1 :X → Y is an additive function. Then,

Fo1 = a1−Fo6 , Fo3 = a1−Fo5 , Fo4 = a1+Fo7 . (4.7)

Combining (4.3) and (4.7), we get

a1(x)−Fo6 (x−y−z)+Fo2 (x)−Fo5 (y)+Fo7 (z)= Fo5 (x−y)+Fo6 (y+z)+Fo7 (z−x).
(4.8)

Put y = x in (4.8) to get

Fo6 (x+z)+Fo7 (z−x)=
(
Fo6 +Fo7

)
(z)+(Fo2 −Fo5 +a1)(x). (4.9)

According to Theorem 3.1, there exist additive functions a2,a3 :X → Y such that

Fo6 = a2+a3, Fo7 = a2−a3, Fo2 −Fo5 +a1 = 2a3, (4.10)

since Foi ’s are odd functions. Applying (4.7) and (4.10) to (4.3), we have

Fo5 (x)−Fo5 (y)= Fo5 (x−y), (4.11)



356 SOON-MO JUNG

that is, Fo5 is additive, say

Fo5 = a4. (4.12)

Consequently, (4.7), (4.10), and (4.12) give the Foi (i= 1, . . . ,7).
We will now use (1.6) for the Fei ’s:

Fe1(x−y−z)+Fe2(x)+Fe3(y)+Fe4(z)= Fe5(x−y)+Fe6(y+z)+Fe7(z−x). (4.13)

By putting z = 0 in (4.13), we have
(
Fe1−Fe5

)
(x−y)= (Fe7−Fe2)(x)−(Fe3−Fe6)(y) (4.14)

which is the Pexider equation. Hence, there exists an additive function a : X → Y
such that

Fe1−Fe5 = Fe7−Fe2 = Fe3−Fe6 = a. (4.15)

However, the first three left-hand sides are even while the right-hand side is odd.
Hence, we may conclude that a≡ 0 and

Fe1 = Fe5 , Fe2 = Fe7 , Fe3 = Fe6 . (4.16)

By applying the equations in (4.16) to (4.13) and by putting x = 0 in the resulting
equation, we get

(
Fe5−Fe6

)
(y+z)= (Fe5−Fe6)(y)+(Fe7−Fe4)(z) (4.17)

which is the Pexider equation. By the same reason, we obtain

Fe5 = Fe6 , Fe4 = Fe7 . (4.18)

By applying (4.16) and (4.18) to (4.13), we have

Fe6(x−y−z)+Fe7(x)+Fe6(y)+Fe7(z)= Fe6(x−y)+Fe6(y+z)+Fe7(z−x). (4.19)

If we put z =−y in (4.19), we get

Fe7(x+y)+Fe6(x−y)= 2
Fe6+Fe7
2

(x)+2F
e
6+Fe7
2

(y). (4.20)

According to Theorem 3.1, there exists a quadratic function Q :X → Y with

Fe7 = Fe6 =Q, (4.21)

since Fe6 and F
e
7 are even functions and F

e
6(0)= Fe7(0)= 0.

Therefore, equations (4.16), (4.18), and (4.21) imply

Fe1 = Fe2 = Fe3 = Fe4 = Fe5 = Fe6 = Fe7 =Q. (4.22)

Conversely, if there exist a quadratic function Q : X → Y , constants ci ∈ Y (i =
1, . . . ,7) with (4.2) and additive functions ai :X → Y (i= 1, . . . ,4) such that each of the
equations in (4.1) holds true, it is obvious that the fi’s satisfy the functional equation
(1.6).
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5. Solutions of equation (1.7). We will now solve the functional equation (1.7)
which is a “pexiderized” form of (1.4) in the class of functions between vector spaces.

Theorem 5.1. Assume that X and Y are vector spaces over fields of characteristic
different from 2, respectively. The functions fi : X → Y (i = 1, . . . ,7) satisfy the func-
tional equation (1.7) if and only if there exist a quadratic function Q :X → Y , constants
ci ∈ Y (i= 1, . . . ,7) and additive functions ai :X → Y (i= 1, . . . ,4) such that

f1(x)=Q(x)+2a1(x)+a2(x)+a3(x)−a4(x)+c1,
f2(x)=Q(x)−a2(x)+a3(x)+a4(x)+c2,
f3(x)=Q(x)+a2(x)−a3(x)+a4(x)+c3,
f4(x)=Q(x)−2a1(x)+a2(x)+a3(x)+a4(x)+c4,
f5(x)=Q(x)+a1(x)+c5,
f6(x)=Q(x)+a2(x)+c6,
f7(x)=Q(x)+a3(x)+c7

(5.1)

with

c1+c2+c3+c4 = 4c5+4c6+4c7. (5.2)

Proof. Define ci = fi(0) for i= 1, . . . ,7. By letting x = y = z = 0 in (1.7) it is clear
that the ci’s satisfy the relation (5.2). For i = 1, . . . ,7 define Fi(x) = fi(x)−ci. It then
follows from (1.7) and (5.2) that the Fi’s satisfy the functional equation (1.7) with
Fi(0)= 0.
Denote by Fei (x) and F

o
i (x) the even part and the odd part of Fi(x), respectively.

If we replace x, y , z in (1.7) by −x, −y , −z, respectively, and if we add (subtract)
the resulting equation to (from) (1.7), we can see that the Foi ’s as well as the F

e
i ’s also

satisfy (1.7).
Let us consider (1.7) for the Foi ’s:

Fo1 (x+y+z)+Fo2 (x−y+z)+Fo3 (x+y−z)+Fo4 (−x+y+z)
= 4Fo5 (x)+4Fo6 (y)+4Fo7 (z).

(5.3)

Put z = 0 in (5.3) to obtain a quadratic equation of Pexider type,
(
Fo1 +Fo3

)
(x+y)+(Fo2 −Fo4 )(x−y)= 2(2Fo5 )(x)+2(2Fo6 )(y). (5.4)

By Theorem 3.1, there exist additive functions a1,a2 :X → Y such that
Fo1 +Fo3 = 2a1+2a2, Fo2 −Fo4 = 2a1−2a2, Fo5 = a1, Fo6 = a2, (5.5)

since the Foi ’s are odd functions.
If we put y = 0 in (5.3), then

(
Fo1 +Fo2

)
(x+z)+(Fo3 −Fo4 )(x−z)= 2(2Fo5 )(x)+2(2Fo7 )(z) (5.6)

which is also a quadratic function of Pexider type. Similarly, there is an additive func-
tion a3 :X → Y with

Fo1 +Fo2 = 2a1+2a3, Fo3 −Fo4 = 2a1−2a3, Fo7 = a3. (5.7)
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Analogously, putting z =−y in (5.3) yields

Fo3 = a2−a3+a4, Fo2 =−a2+a3+a4, 2a1− F
o
1

2
+ F

o
4

2
= a4, (5.8)

where a4 :X → Y is also an additive function. Therefore, (5.5), (5.7), and (5.8) give the
Foi ’s (i= 1, . . . ,7).
We will now deal with (1.7) associated with the Fei ’s:

Fe1(x+y+z)+Fe2(x−y+z)+Fe3(x+y−z)+Fe4(−x+y+z)
= 4Fe5(x)+4Fe6(y)+4Fe7(z).

(5.9)

By putting z = 0 in (5.9), we obtain
(
Fe1+Fe3

)
(x+y)+(Fe2+Fe4)(x−y)= 2(2Fe5)(x)+2(2Fe6)(y). (5.10)

Hence, by Theorem 3.1 again, there is a quadratic function Q :X → Y with

Fe1+Fe3 = Fe2+Fe4 = 2Fe5 = 2Fe6 = 2Q, (5.11)

since the Fei ’s are even and F
e
i (0)= 0.

By setting y = 0 in (5.9) and then using Theorem 3.1, we get

Fe1+Fe2 = Fe3+Fe4 = 2Fe5 = 2Fe7 = 2Q. (5.12)

Analogously, by putting x = 0 in (5.9) we have

Fe1+Fe4 = Fe2+Fe3 = 2Fe6 = 2Fe7 = 2Q, (5.13)

and (5.11) and (5.12), together with (5.13), imply

Fe1 = 2Q−Fe4 , Fe2 = Fe3 = Fe4 , Fe5 = Fe6 = Fe7 =Q. (5.14)

Applying (5.14) to (5.9) and setting y = z = 0 in the resulting equation, we have

Fe1 = Fe2 = Fe3 = Fe4 = Fe5 = Fe6 = Fe7 =Q. (5.15)

Conversely, if there exists a quadratic function Q : X → Y , constants ci ∈ Y (i =
1, . . . ,7) with (5.2) and if there exist additive functions ai : X → Y (i = 1, . . . ,4) such
that each of the equations in (5.1) holds true, it is obvious that the fi’s satisfy the
functional equation (1.7).

Remark 5.2. Finally, it is worthwhile to remark that each of (1.5), (1.6), and (1.7)
is not equivalent to the other, while (1.1), (1.3), and (1.4) are equivalent.

References

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New
York, London, 1966. MR 34#8020. Zbl 139.09301.

[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Math-
ematics and its Applications, vol. 31, Cambridge University Press, Cambridge, 1989,
With applications to mathematics, information theory and to the natural and social
sciences. MR 90h:39001. Zbl 685.39006.

http://www.ams.org/mathscinet-getitem?mr=34:8020
http://www.emis.de/cgi-bin/MATH-item?139.09301
http://www.ams.org/mathscinet-getitem?mr=90h:39001
http://www.emis.de/cgi-bin/MATH-item?685.39006


QUADRATIC FUNCTIONAL EQUATIONS OF PEXIDER TYPE 359

[3] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables,
Birkhäuser Boston Inc., Boston, MA, 1998. MR 99i:39035. Zbl 907.39025.

[4] S. Jung, On the Hyers-Ulam stability of the functional equations that have the qua-
dratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126–137. MR 99e:39095.
Zbl 928.39013.

[5] , On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math.
Anal. Appl. 232 (1999), no. 2, 384–393. CMP 1 683 116. Zbl 926.39013.

[6] P. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27
(1995), no. 3-4, 368–372. MR 96h:39011. Zbl 836.39006.

[7] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Prace
Naukowe Uniwersytetu Slaskiego w Katowicach [Scientific Publications of the Uni-
versity of Silesia], vol. 489, Uniwersytet Slaski, Katowice; Panstwowe Wydawnictwo
Naukowe (PWN), Warsaw, 1985, Cauchy’s equation and Jensen’s inequality. With a
Polish summary. MR 86i:39008. Zbl 555.39004.

Soon-Mo Jung: Mathematics Section, College of Science and Technology, Hong-Ik
University, 339-800 Chochiwon, Korea
E-mail address: smjung@wow.hongik.ac.kr

http://www.ams.org/mathscinet-getitem?mr=99i:39035
http://www.emis.de/cgi-bin/MATH-item?907.39025
http://www.ams.org/mathscinet-getitem?mr=99e:39095
http://www.emis.de/cgi-bin/MATH-item?928.39013
http://www.ams.org/mathscinet-getitem?mr=1+683+116
http://www.emis.de/cgi-bin/MATH-item?926.39013
http://www.ams.org/mathscinet-getitem?mr=96h:39011
http://www.emis.de/cgi-bin/MATH-item?836.39006
http://www.ams.org/mathscinet-getitem?mr=86i:39008
http://www.emis.de/cgi-bin/MATH-item?555.39004
mailto:smjung@wow.hongik.ac.kr

