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Abstract. Let � be a nest and let � be a subalgebra of L(H) containing all rank one
operators of alg�. We give several conditions under which any derivation δ from � into
L(H) must be inner. The conditions include (1) H− ≠H, (2) 0+ ≠ 0, (3) there is a nontrivial
projection in � which is in �, and (4) δ is norm continuous. We also give some applications.

Keywords and phrases. Derivation, nest algebra, triangular operator algebra.

2000 Mathematics Subject Classification. Primary 47B47, 47L35.

1. Introduction. In this paper, we unify some results on derivations by considering
derivations from an algebra � containing all rank one operators of a nest algebra into
an �-bimodule �. Chernoff [1] proves that every derivation from F(H) into L(H) is
inner. In [2], Christensen proves that every derivation from a nest algebra into itself
or into L(H) is inner. In [3], Christensen and Peligrad show that every derivation of a
quasitriangular operator algebra into itself is inner. Knowles [7] generalizes the result
of [2] and gets that any derivation from a nest algebra into an ideal � of L(H) is inner.
Let � be a nest of subspaces of a Hilbert space H, let � be a subalgebra of L(H)
containing all rank one operators of alg�, and let δ be a derivation from � into L(H).
We prove that if one of the following conditions holds:

(1) H− ≠H,
(2) 0+ ≠ 0,
(3) there exists a nontrivial P ∈�, such that P ∈�, then δ is inner.
We also prove that for any nest, if δ is a norm continuous derivation from � into

L(H), then δ is inner.
We discuss some applications of these results.
Let H be a complex separable Hilbert space, L(H) the algebra of all bounded linear

operators onH, K(H) the ideal of all compact operators in L(H), F(H) the subalgebra
of all finite rank operators on H, and F1(H) the subset of all operators in F(H) with
rank less than or equal to 1. We call a subalgebra � of L(H) standard provided �

contains F(H). A collection � of subspaces of H is said to be a subspace lattice if it
contains zero andH, and is complete in the sense that it is closed under the formation
of arbitrary closed linear spans and intersections. A subspace lattice � is called a nest
if it is a totally ordered subspace lattice. Given a nest �, let alg� = {T ∈ L(H) : TN ⊆
N, N ∈ �}. Alg� is said to be the nest algebra associated with �. If � is a nest and
E ∈ �, then we define E− = ∨{F ∈ � : F ⊊ E}, and E+ = ∧{F ∈ � : F ⊋ E}. If e, f ∈ H
we write e∗ ⊗ f for the rank one operator x → (x,e)f , whose norm is ‖e‖‖f‖. If
� is a nest, then by [8, Lemma 3.7], e∗ ⊗ f ∈ alg� if and only if there is an E ∈ �

http://ijmms.hindawi.com
http://www.hindawi.com


346 J. LI AND H. PENDHARKAR

such that f ∈ E and e ∈ (E−)⊥. If � is a subalgebra of L(H), then we say that � is a
triangular operator algebra, if �∩�∗ is a maximal abelian selfadjoint subalgebra of
L(H). If � is maximal triangular, and lat� is a maximal nest, then we say that � is
strongly reducible. A derivation δ of an algebra � into an �-bimodule � is a linear map
satisfying δ(AB)=Aδ(B)+δ(A)B, for any A,B ∈�. A derivation δ is called �-inner if
there exists T ∈�, such that δ(A)=AT−TA. When we say that a derivation δ : �→�

is inner, we mean �-inner.

2. Derivations Let � be a nest. In the following, we consider the derivation from
a subalgebra � of L(H) containing all rank one operators of alg� into L(H).

Theorem 2.1. If� is a nest such thatH− ≠H, � is a subalgebra of L(H) containing
(alg�)∩F1(H), and δ is a derivation from � into L(H), then δ is inner.

Proof. Since H− ≠ H, for any f∗ ∈ (H−)⊥, f∗ ≠ 0, we choose y in H such that
f∗

(
y
)= 1. For any x inH, by [8, Lemma 3.7], it follows that f∗⊗x ∈ alg�. Now define

Tx =−δ(f∗⊗x)y, for x in H. (2.1)

Now for A in �,

TAx =−δ(f∗⊗Ax)y =−δ(A)x−Aδ(f∗⊗x)y =−δ(A)x+ATx. (2.2)

Hence for any x ∈H, −TAx+ATx = δ(A)x; thus

δ(A)=AT −TA. (2.3)

It remains to show that δ is bounded.
Let limn→∞xn = x, and limn→∞Txn = y . Now for any rank one operator A ∈ alg�,

we have that δ(A) and TA are bounded. It follows that AT = δ(A)+TA is bounded,
and limn→∞ATxn =ATx =Ay . Since � contains all rank one operators of alg�, and
by [4, Proposition 3.8], every finite rank operator of alg� is a sum of some rank one
operators of alg�, we have, for any finite rank operator B in alg�, BTx = By . By
[4, Theorem 3.11], choose a bounded net {Bλ} of finite rank operators in alg� such
that limλ Bλ = I in the strong operator topology. We have Tx =y . By the closed graph
theorem, it follows that T is bounded.

Corollary 2.2. If � is a nest such that 0+ ≠ 0, and � is a subalgebra of L(H)
containing all rank one operators of alg�, then every derivation δ from � into L(H)
is inner.

Proof. Let �⊥ = {N⊥ :N ∈�}. Then �⊥ is a nest such that H− ≠H. Since alg�⊥ =
(alg�)∗, it follows that �∗ contains all rank one operators of alg�⊥. Define δ∗(A =
(δ(A∗)))∗ for any A in �∗.
It is easy to prove that δ∗ is a derivation from �∗ into L(H). By Theorem 2.1, we

have that δ∗ is inner. It follows that δ is inner.

We now consider a nest � such that H− =H.
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Lemma 2.3. Let � be a nest, E1,E2 ∈� and E1 ⊊ E2. If T is a linear map from E2 into
H such that ST = TS on E2 for any rank one operator S of alg�, then there exists a λ
such that Tx = λx, for any x ∈ E1.

Proof. For x ∈ E1, choose y ∈ E2−E1 such that ‖y‖ = 1. Since y∗⊗x ∈ alg�, by
hypothesis

Ty∗⊗x(y)=y∗⊗xTy = Tx = (Ty,y)x. (2.4)

Since every one-dimensional subspace of L(E2,H) is reflexive, it follows that there
exists λ such that T = λI.

Lemma 2.4. Let � be a nest such that H− = H, and let M = ∪{N : N ⊊ H, N ∈ �}.
Then there exists a linear map T from M into H such that δ(A)x = (AT −TA)x, for
any x in M .

Proof. Since H− = H, we may choose an increasing sequence {Pi} ⊆ � such that
Pi → I in the strong operator topology. Also choose f∗ ∈ P⊥i , and y ∈ H, such that
‖f∗‖ = 1, f∗(y)= 1, and ‖y‖ ≤ 2. Define,

Tix =−δ
(
f∗⊗x)y for x ∈ Pi. (2.5)

Using an argument similar to the proof of Theorem 2.1, we may prove that for A in �,
δ(A)x = (ATi−TiA)x forx in Pi. If j ≥ i, then forx ∈ Pi, (ATi−TiA)x = (ATj−TjA)x.
Hence

A
(
Ti−Tj

)
x = (Ti−Tj)Ax, for x ∈ Pi. (2.6)

By Lemma 2.3, we have Tj−Ti = λij on Pi−1. Now for j > 2, let T̃j = T1+λ1,j . We have,
for k > j > 2, T̃jx = T̃kx for all x ∈ Pj−1. Now for any x ∈ ∪{Pi} = ∪{N :N ⊊H, N ∈
�}, choose a j > 2 such that x ∈ Pj and let Tx = T̃jx. Then, T is well defined and for
x in M, δ(A)x = (AT −TA)x.

Remark 2.5. Using the idea in the proof of Theorem 2.1, we can prove that in
Lemma 2.3, Ti is a bounded operator from Pi into H.

Theorem 2.6. If � is a nest, � is a subalgebra of L(H) containing all rank one
operators of alg�, and δ is a norm continuous derivation from � into L(H), then δ is
inner.

Proof. If � satisfies H− ≠ H, then by Theorem 2.1, we get that δ is inner. If �

satisfies H− =H, then by Lemma 2.4, there exists a linear map T such that

δ(A)x = (AT −TA)x for any x in M =∪{N :N ⊊H, N ∈�}. (2.7)

By (2.5) and the boundedness of δ, it follows that ‖Tix‖ ≤ 2‖δ‖‖x‖. Since |λij| ≤
‖Ti‖+‖Tj‖ ≤ 4‖δ‖, it follows that ‖T‖ ≤ 6‖δ‖. Thus T is bounded on M . Let T̃ be
the unique bounded extension of T to H. Then T̃ is bounded and for A in �, δ(A)=
AT̃ − T̃A.
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Theorem 2.7. Let � be a nest satisfying H− =H. If there exists a nontrivial projec-
tion P ∈�, such that P ∈�, and δ is a derivation from � into L(H), then δ is inner.

Proof. As in the proof of Lemma 2.4, we choose P1 = P . Let H = P ⊕P⊥. Then T
can be decomposed as

T =
(
T11 T12
T21 T22

)
. (2.8)

Let Q=∪{N−P : P ⊊N ∈�, N ≠H}, T12 :Q→ P, T22 :Q→Q.
By the definition of T , T11 and T21 are bounded. We now prove that T12 and T22 are

bounded. Since A=
(
1 0
0 0

)
in �, we have that δ(A)=

(
0 T12

−T21 0

)
holds on M . Since δ(A)

is bounded, it follows that T12 is bounded. Now, for any rank one operator A∈ L(H),
we have PA(1−P)∈�. Hence,

δ
(
PA(1−P))=

(
PA(1−P) PA(1−P)T22−T11

0 −T21PA(1−P)

)
(2.9)

holds on M . Since δ(PA(1−P)) is bounded, it follows that PA(1−P)T22 is bounded.
Hence for any f∗ ∈ P⊥ and e∈ P, e≠ 0, f∗⊗eT22 is bounded on Q. Thus there exists
c such that |f∗(T22x)| ≤ c, for any x ∈Q, and ‖x‖ ≤ 1. By the uniform boundedness
theorem, we have that {‖T22x‖ : ‖x‖ ≤ 1} is bounded. Hence T22 is bounded. As in
Theorem 2.6, there exists a bounded extension T̃ of T toH such that forA in�, δ(A)=
AT̃ − T̃A.

3. Applications. In this section, we apply the results above to some special subal-
gebras of L(H). If A⊇ F(H), then by Theorem 2.1, we have the following corollaries.

Corollary 3.1 [1]. Every derivation from a standard operator algebra into L(H)
is inner.

Corollary 3.2 [2]. If δ is a derivation from alg� into itself, then δ is inner.

Proof. By Theorems 2.1 and 2.7, we have that there is T in L(H) such that for any
A in �, δ(A) = AT −TA. Now we prove that T is in alg�. Now for any P in �, since
δ(P)= PT −TP in alg�, we have that (I−P)δ(P)P = 0=−(I−P)TP . This completes
the proof.

Let � be a subalgebra of L(H), and let � be any subset of L(H). We denote by C(�,�)
the collection, {T ∈ L(H) :AT −TA∈�, ∀A∈�}.

Lemma 3.3 [6]. Let � be a nest algebra and � be an ideal in L(H). Then C(�,�) =
CI+�.

Using this lemma and Theorem 2.7, we easily prove the following result.

Corollary 3.4. If � is an algebra containing alg�, then any derivation δ : �→ Cp
is inner for 1≤ p ≤∞.

Corollary 3.5. If � is a triangular operator algebra containing every rank one
operator in alg�, then every derivation δ from � into L(H) is inner.
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Proof. Suppose �̃ is a maximal nest containing �. By hypothesis we have that
B ⊇ (alg�)∩F1(H)⊇ (alg �̃)∩F1(H). Since � contains all rank one operators of alg�,
we have that lat� ⊆ �. By [5, Theorem 4], it follows that lat� = �̃ = �. Since � is a
triangular operator algebra, it follows �̃⊆�.
If H− ≠H, then by Theorem 2.1, we have that δ is inner.
IfH− =H, �⊆�, and � is a maximal nest, by Theorem 2.7, it follows that δ is inner.

Remark 3.6. By Corollary 3.1, it follows that every derivation δ : F(H)→ L(H) is
inner. However if � is a unital algebra containing F(H) and � ≠ L(H), then there
is a derivation from F(H) into � that is not inner, e.g., δ = δT with T ∉ �. Also if
� = K(H)+CI, and T ∉ �, then δT : �→� is a derivation that is not inner, but �

contains all rank one operators of L(H).
By [8, Lemma 5.2], we know that if � is a strongly reducible maximal triangular

algebra, then lat� is a nest and � contains all rank one operators of alglat(�). Hence
by Corollary 3.5 and Theorem 2.7, we have the following result.

Corollary 3.7. Every derivation from a strongly reducible maximal triangular al-
gebra into L(H) is inner.
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