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Abstract. An embedding (called a GCD theory) of partly ordered abelian group G into
abelian l-group Γ is investigated such that any element of Γ is an infimum of a subset
(possible non-finite) from G. It is proved that a GCD theory need not be unique. A complete
GCD theory is introduced and it is proved that G admits a complete GCD theory if and only
if it admits a GCD theory G �� Γ such that Γ is an Archimedean l-group. Finally, it is
proved that a complete GCD theory is unique (up to o-isomorphisms) and that a po-group
admits the complete GCD theory if and only if any v-ideal is v-invertible.
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1. Introduction. The problem of embedding of partly ordered abelian directed
group (po-group, shortly) G into an abelian lattice ordered group (l-group) Γ is con-
nected with investigation of arithmetical properties of rings, monoids and po-groups
and it has its motivation in the theory of algebraic numbers. Various embedding the-
orems not only for po-groups, but also for integral domains (e.g., embedding into the
GCD domain) might serve as a basis for various concepts in arithmetical investigation
of rings, po-groups and monoids.
The axiomatic concept of a domain with this embedding property was formulated

firstly in the book of Borewicz and Šafarevǐc [3]. After then this axiomatic concept
was firstly transformed onto semigroups with cancellation by Skula [16, 17] and then
transformed and generalized onto po-groups and monoids by several authors (see
[2, 6, 7, 8, 13, 14]). Nevertheless in all these transformations and generalizations the
principal structure of this axiomatic concept remains the same and for po-groups it
could be expressed as follows.
A po-group G is said to admits some “divisor theory” if there exists an l-group Γ and

a homomorphism h :G �� Γ such that
(1) h is an ordered embedding (i.e., o-monomorphism),
(2) h(G) is dense in Γ (in some specific sense).

For example, during the history of development of this problem the following principal
formulations of the density condition (2) appeared, most of them being due to Skula,
Arnold and Borewicz and Šafarevǐc.

(∀α∈ Γ) ∃g1, . . . ,gn ∈G, α= h(g1)∧···∧h(gn), (1.1)

(∀α∈ Γ) α=
∧
{h(g) : h(g)≥α}, (1.2)
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(∀α,β∈ Γ) {g ∈G : h(g)≥α} = {g ∈G : h(g)≥ β} �⇒ α= β, (1.3)

(∀α,β∈ Γ) (∃γ ∈ Γ) such that α∧γ = 1, β·γ ∈ h(G). (1.4)

In po-groups and integral domains theory these conditions (1.1), (1.2), (1.3), and (1.4)
characterize po-groups with various types of divisor theory or integral domains which
are generalizations of Krull domains (see [2, 7, 13, 16]). For example, if Γ is required
to be a free abelian group Z(P) for some set P then the conditions (1.1), (1.2), and (1.3)
are equivalent and h is then called the theory of divisors of G. For general l-group Γ
the condition (1.1) characterizes po-groups with the so-called theory of quasi divisors
(this notion was introduced by Aubert [2], although Jaffard investigated properties of
such groups more early [9]), and the condition (1.4) leads to po-groups with the strong
theory of quasi divisors (see [14]). (This last axiom was originaly formulated by Arnold
[1] and later used by Skula [16].)
Although the conditions (1.2) and (1.3) were not investigated for general l-group

separately, Aubert [2] mistakes (1.1) and (1.3) (and, hence (1.4)) for equivalent. This
mistake was pointed out by Lucius [10] who proved (in language of integral domains)
that (1.3) does not imply (1.1), in general, and he introduced (again in the language of
integral domains) a new notion of a po-group with the GCD theory as a po-group G
with the embedding h : G �� Γ which satisfies the condition (1.3). He proved also
that the group of divisibility of an integral domain R satisfies the condition (1.3) if
and only if R is v-domain on the contrary to the result of Geroldinger and Močkoř [7]
stating that the group of divisibility of R satisfies the condition (1.1) if and only if R is
a Prüfer v-multiplication domain. Hence, po-groups which satisfy the condition (1.3)
really represent a generalization of po-groups with quasi divisor theory.
In this paper, we want to describe some properties of po-groups with GCD theory.

The principal problem we want to solve concerns the uniqueness of the GCD the-
ory. It is well known (and for the first time it was proved by Jaffard [9]) that up to
o-isomorphism for any po-group there exist as most one quasi divisor theory. This
uniqueness property is closely connected with the Lorenzen t-group Λt(G) of G, since
for any quasi divisor theory h : G �� Γ the natural embedding G �� Λt(G) is
the theory of quasi divisors, as well, and Λt(G) is o-isomorphic to Γ . For GCD the-
ory h : G �� Γ the situation is a little more complicated. Although the embedding
G �� Λt(G) is a GCD theory (in case that G admits the GCD theory), as well, it is
the open problem stated by Lucius [10] whether Λt(G) is again (up to o-isomorphism)
unique within l-groups Γ with the GCD theory h : G �� Γ . In this paper, we show
that, in general, the GCD theory is not unique which answers the Lucius question in
negative. We further introduce the notion of a complete GCD theory and we prove that
G admits the complete GCD theory if and only if it admits a GCD theory h :G �� Γ
such that Γ is Archimedean. Moreover, we show that a po-group admits the complete
GCD theory if and only if any v-ideal is v-invertible and we prove that a complete
GCD theory is at most unique.

2. Basic properties of groups with GCD theory. The notion of GCD theory was
introduced by Lucius for integral domains only. We present firstly the translation of
his definition for po-groups.
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Definition 2.1. Let G be a po-group. By a GCD theory of G we mean a homomor-
phism h of G into an abelian l-group Γ such that

(1) h is an o-monomorphism,
(2) (∀α,β∈ Γ) α= β� {g ∈G : h(g)≥α} = {g ∈G : h(g)≥ β}.

It is clear that if G admits a quasi divisor theory it admits the GCD theory, as well.
In fact, let h : G �� Γ be the quasi divisor theory of G and let A = {g ∈ G : h(g) ≥
α} = {g ∈ G : h(g) ≥ β} = B for α,β ∈ Γ . Since α = h(a1)∧···∧h(an), β = h(b1)∧
···∧h(bm) for some ai,bj ∈ G, we have ai ∈ B and bj ∈ A for all i,j and it follows
that α= β.
The principal tool for investigation of properties of po-groups with GCD theory

seems to be the notion of an r -ideal. Recall that by an r -system of ideals in a po-group
G we mean a map X � Xr (Xr is called an r -ideal) from the set of all lower bounded
subsets X of G into the power set of G which satisfies the following conditions:

(1) X ⊆Xr ,
(2) X ⊆ Yr �⇒ Xr ⊆ Yr ,
(3) {a}r = a·G+ = (a)r∀a∈G,
(4) a·Xr = (a·X)r∀a∈G.

Recall that an r -system is called a v-system, if

Xv =
⋂

X⊆(y)r ,y∈G
(y)r , (2.1)

and it is called a t-system, if

Xt =
⋃

Y⊆X,Y finite
Yv. (2.2)

An r -system r is said to be of a finite character, if Xr =
⋃
Y⊆X,Y finiteYr . An r -ideal Xr

is finitely generated if Xr = Yr for some finite subset Y . Clearly, any t-system is of
finite character. On the set �r (G) of r -ideals we may define an ordering by Xr ≤ Yr if
and only if Yr ⊆Xr and a multiplication Xr ×Yr = (XrYr )r = (X ·Y)r . An r -ideal Ar is
called r -invertible if it has the inverse in the semigroup �r (G). A po-group G with an
r -system r is r -closed if (Xr : Xr) ⊆ G+ for any Xr . For any r -closed po-group G we
may construct another r -system in G, denoted by ra, such that ra is regularly closed,
i.e., in the semigroup (�fr (G),×) of all finitely generated r -ideals the cancellation law
holds. The quotient group Λr (G) of �

f
r (G) is called the Lorenzen r -group of G and

a map h : G �� Λr (G) defined by h(g) = (g)r is an o-isomorphism into. For t and
v systems we have ta = t, va = v and the Lorenzen r -group for r = t or r = v then
consists of all formal quotientsAr/Br , whereA and B are finite sets. A homomorphism
f : (G,r) �� (H,s) of po-groups with ideal systems r and s, respectively, is called
(r ,s)-morphism if for any lower bounded subset X ⊆G we have f(Xr )⊆ (f (X))s .
The theory of r -ideals of po-groups seems to be a tool which enables us to establish

relationships between arithmetical properties of integral domains and the theory of
po-groups. There exists a lot of works justifying these processes, one of the last result
in this direction being a paper of Geroldinger and the author (see [7]) where it is proved
that properties of being a Prüferv-multiplication domain, a domain of Krull type, or an
independent domain of Krull type, are purelymultiplicative ones and can be expressed
by using r -ideals in the corresponding groups of divisibility.
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We will now investigate some simple properties of po-groups with GCD theory. The
density property from Definition 2.1 is equivalent to some other conditions as the
following proposition states, where we used the following notation. Let h : G �� Γ
be an o-monomorphism. For α ∈ Γ we put ᾱh = ᾱ = {g ∈ G : h(g) ≥ α} = h−1((α)v ∩
h(G)). For any subset X in a po-group G we write g ≤ X for g ≤ x for all x ∈ X and
by ∧X we understand ∧x∈Xx.

Proposition 2.2. LetG be a po-group and let h :G �� Γ be an o-monomorphism
into an l-group Γ . Then the following statements are equivalent.

(1) (∀α,β∈ Γ) ᾱ= β̄�α= β,
(2) (∀α,β∈ Γ) ᾱ⊆ β̄� β≤α,
(3) (∀α∈ Γ) α=∧h(ᾱ),
(4) (∀α∈ Γ) (α)v = (h(G)∩(α)v)v ,
(5) (∀α∈ Γ) (∃Av ∈ �v(G)) α=

∧
h(Av),

(6) (∀α∈ Γ) (∃A⊆G) A is lower bounded and α=∧h(A),
(7) (∀α∈ Γ) (∃At ∈ �t(G)) α=

∧
h(At).

For the proof of this proposition we need the following lemma.

Lemma 2.3. Let h :G �� Γ be an o-monomorphism into an l-group Γ such that it
satisfies the condition (2) from Proposition 2.2. Then h is a (t,t)-morphism.

Proof. LetA⊆G be lower bounded and let g ∈At . Then there exists a finite subset
K ⊆ A such that g ∈ Kt = Kv and we have h(g) ∈ (h(K))v = (

∧
h(K))v . In fact, we

show that (
∧
h(K))−1 ⊆ h(g)−1. Let y−1 ∈ (∧h(K))−1. Then we have h(y)≤∧h(K)≤

h(K) and it follows that y ≤ K. Since g ∈ Kt , we have g ≥ y and it follows that
y−1 ∈ h(g)−1. Then according to the condition (2),h(g)≥∧h(K) andh(g)∈ (h(K))v .
Therefore, h is a (t,t)-morphism.

Proof of Proposition 2.2. (1)⇒(2). Let ᾱ⊆ β̄. We show that in this case α∨β=
ᾱ. Clearly, α∨β ⊆ ᾱ. For g ∈ ᾱ ⊆ β̄ it follows that h(g) ≥ α∨β and ᾱ ⊆ α∨β. From
(1) then follows α≥ β.
(2)⇒(3). Let α∈ Γ . We show firstly that (α)v∩h(G) �= ∅. In fact, let us consider the

following only possible cases.
(a) α ≥ 1Γ . Assume that the statement is not true. Then (α2)v ∩h(G) = ∅ and it

follows that ᾱ = α2. Therefore, we have α = α2 according to (2) and it follows that
α= 1Γ . But in this case we have h(1G)∈ (1Γ )v∩h(G), a contradiction.
(b) α< 1Γ . Then we have h(1G)∈ (1Γ )v∩h(G).
(c) α‖1Γ . Since Γ is directed, there exists β ∈ Γ+ such that α ·β ≥ 1Γ and it follows

that h(g)∈ (α·β)v∩h(G) for some g ∈G. Hence h(g)≥α·β≥α.
Now let β ∈ Γ be such that β ≤ h(ᾱ). It follows that ᾱ ⊆ β̄ and according to (2) we

have α≥ β. Therefore, α=∧(h(ᾱ)).
(3)⇒(4). Letα∈ Γ . Sinceh(ᾱ) is lower bounded byα, there exists thev-ideal (h(ᾱ))v .

We have to prove only that α ∈ (h(ᾱ))v . Let β ≤ h(ᾱ). From (3) it follows that β ≤ α
and we have α∈ (h(ᾱ))v .
(4)⇒(1). Let ᾱ= β̄. Then h(ᾱ)= h(β̄) and according to (4) it follows that (α)v = (β)v .

Hence, α= β.
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(4)⇒(5). Let α ∈ Γ . Then ᾱ is lower bounded in G. In fact, since the statement (2)
holds, analogously as we did in the proof of implication (2)⇒(3) we can prove that
h(g−1) ∈ (α−1)v ∩h(G) for some g ∈ G. Hence, h(g) ≤ α and it follows that g ≤ ᾱ
in G. Since (4)�(3), we have α = ∧h(ᾱ). We prove that α = ∧h(ᾱv). In fact, since
ᾱ ⊆ ᾱv , then any lower bound of ᾱv is less than or equal to α. It remains to show
that α ≤ h(ᾱv). Let g ∈ ᾱv and let h(y) ≤ α, hence, ᾱ ⊆ (y)v . Since g ∈ ᾱv , then g
is contained in any principal v-ideal containing ᾱ, hence, we have g ≥ y . Therefore,
h(y) ≤ α∧h(g) and it follows that α−1 ⊆ (α∧h(g))−1. Since the opposite inclusion
holds and (4)�(1), we have α≤ h(g) and α≤ h(ᾱv).
(5)⇒(6). Trivial.
(6)⇒(3). Let A be a lower bounded subset in G and let α = ∧h(A). Then A ⊆ ᾱ.

We show that α = ∧h(ᾱ). Let β ≤ h(ᾱ), then β ≤ h(A) and we have β ≤ α. Hence,
α=∧h(ᾱ).
(6)⇒(7). Let α ∈ Γ and let A ⊆ G be a lower bounded subset such that α = ∧h(A).

We prove that α = ∧h(At). It is clear that for any lower bound β of h(At), β is a
lower bound of h(A) and it follows that β ≤ α. Hence, we have to prove only that
α ≤ h(At). Let g ∈ At . Then there exists a finite subset K ⊆ A such that g ∈ Kt and
for β = ∧h(K) ∈ Γ we have h(g) ∈ h(Kt) ⊆ (h(K))t = (β)t , according to the lemma.
Hence, h(g)≥ β≥α=∧h(A).
(7)⇒(3). Let α=∧h(At) for some lower bounded subset A⊆G. Then At ⊆ ᾱ and it

follows that α=∧h(At)≥∧h(ᾱ)≥α. Therefore, α=∧h(ᾱ).
The following proposition has its origin in the paper of Clifford [4] who originaly

proved that for a theory of divisors h : G �� Z(P) the set ᾱ is v-ideal for any α ∈
Z(P). In language of integral domains this proposition was proved for GCD theory by
Lucius [10]. Due to the importance of this result for our next results we translate this
statement into the language of po-groups and present a little different proof, although
the proof is, in fact, contained in the proof of Proposition 2.2.

Proposition 2.4. Let h : G �� Γ be a GCD theory. Then for any α ∈ Γ and any
lower bounded subset A⊆G such that α=∧h(A) we have ᾱ=Av .

Proof. We show firstly that ᾱ is an v-ideal. From the proof of Proposition 2.2 it
follows that ᾱ is lower bounded in G. Let g ∈ ᾱv . Then according to Proposition 2.2,

g ∈ ᾱv =
⋂
y∈G

ᾱ⊆(y)v=h(y)

(y)v =
⋂
y∈G

α≥h(y)

(y)v. (2.3)

Then α−1 = (h(g)∧α)−1. In fact, let y ∈ α−1. Then α ≥ h(y−1) and we have g ∈
(y−1)v . Thus, h(y−1) ≤ α∧ h(g) and it follows that y ∈ (α∧h(g))−1. The other
inclusion is trivial. Then from Proposition 2.2 then it follows that α≤ h(g) and g ∈ ᾱ.
Therefore, ᾱ= ᾱv . Now let α=

∧
h(A). Then A⊆ ᾱ and Av ⊆ ᾱv = ᾱ. Conversely, for

g ∈ ᾱ and for any y ≤ A we have h(y) ≤ α ≤ h(g) and it follows that y ≤ g. Hence,
g ∈Av and Av = ᾱ.
The following proposition is a generalization of the above-mentioned result of

Clifford.
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Proposition 2.5. Let h : G �� Γ be a GCD theory. Then the map¯: (Γ ,·) ��

(�v(G),×) such that α� ᾱ is an o-isomorphism into and the following diagram com-
mutes:

Γ
− �� �v(G)

G

h

��

G.

(·)v

�� (2.4)

Proof. Let α,β∈ Γ . Then according to Proposition 2.2, we have α·β=∧h(α·β).
On the other hand, we obtain

α·β=
(∧

h(ᾱ)
)
·
(∧

h(β̄)
)
=
∧
h(ᾱ· β̄). (2.5)

Then according to Proposition 2.4, we have

ᾱ× β̄= ᾱv× β̄v =
∧
h
(
ᾱ· β̄),

α·β= (α·β)v =
∧
h
(
α·β). (2.6)

Therefore, α·β= ᾱ× β̄ and¯ is a group homomorphism. Moreover, from Proposition
2.2 it follows that it is injective and o-isomorphism into. The commutativity of the
diagram follows from (g)v = h(g).
The following corollary (in integral domains language) is due to Lucius [10].

Corollary 2.6. Let h : G �� Γ be a GCD theory. Then any finitely generated
v-ideal of G is v-invertible.

Proof. Let g1, . . . ,gn ∈ G and let α = h(g1) ∧ ··· ∧ h(gn). Then according to
Proposition 2.4, we have ᾱ= (g1, . . . ,gn)v and it follows that

1�v(G) =
(
1G
)
v =α·α−1 = ᾱ×α−1. (2.7)

Hence, ᾱ is v-invertible.

Lucius pointed out that integral domain with GCD theory need not be Prüfer v-
multiplication domain. For this he used the example of v-domain which is not Prüfer
v-multiplication domain constructed in [11]. The following lemma enables us to use
this example to show that po-groups with GCD theory need not admit quasi divisor
theory.

Lemma 2.7. Let R be an integral domain and let G(R) be its group of divisibil-
ity. Then there exists an isomorphism σ : (�v(G(R)),×) �� (�v(R),×) such that
σ(�fv(G(R)))= �

f
v(R).

Proof. Let K be the quotient field of R and let w : K× �� G(R) be the corre-
sponding semi-valuation of R. For A ∈ �v(G(R)) we set σ(A) = w−1(A)∪{0K}. Let
a,b ∈ σ(A). Since w(a+b)≥α for all α∈G(R) such that α≤w(a),w(b) (see [15]),
we havew(a+b)∈ (w(a),w(b))v ⊆Av and it follows that σ(A) is an ideal. It is clear
that σ is a homomorphism. Conversely, for J ∈ �v(R) we set ψ(J) = w(J×). Then
ψ(J) is v-ideal and ψ is a homomorphism which is inverse to σ .
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Let R be a v-domain which is not Prüfer v-multiplication domain. Then according
to previous lemma every finitely generated v-ideal of G = G(R) is v-invertible, but
finitely generated v-ideal of G do not form a group. Hence, G does not admit quasi
divisor theory according to [2] or [7]. On the other hand, G admits GCD theory as the
following proposition shows (a version of this proposition for integral domains was
proved by Lucius [10]).

Proposition 2.8. Let G be a po-group and let any finitely generated v-ideal of G
be v-invertible. Then the embedding h :G �� Λv(G) is the GCD theory of G.

Proof. It should be observed that the Lorenzen group Λv(G) exists, since G is v-
closed. Moreover, Λv(G)=Λt(G) in this case and elements of Λv(G) can be identified
with some v-ideals of G. In fact, for any formal fraction Av/Bv ∈ Λv(G) (with A,B
finite) there exists v-ideal Cv such that Av = Bv × Cv . In this case, Av/Bv can be
identified with Cv . Hence, let Cv,Dv be such that Cv =Dv , where Xv = {g ∈G : (g)v ⊆
Xv}. But in this case Cv =Dv and (·)v :G �� Λv(G) is the GCD theory.

In quasi divisor theory it is well known that the embedding G �� Λt(G) is (up to
isomorphisms) the only possible quasi divisor theory (if it exists). In the next section,
we show that for GCD theory it is not true. This answers in negative the question
presented by Lucius [10].

Proposition 2.9. Let σ :G �� G′ be a surjective (v,v)-morphism of po-groups.
Then if G admits a GCD theory the same is true for G′.

Proof. Let X ⊆G′ be a finite set and let A⊆G be a finite set such that σ(A)= X.
Let Cv be the v-inverse of Av in G, (1G)v = (A·C)v . Then we have

1G′ ∈ σ
((
1G
)
v
)= σ((A·C)v)⊆ (σ(A·C))v =Xv×(σ(C))v. (2.8)

Thus, (1G′)v ⊆ Xv × (σ(C))v . Since A ·C ⊆ (1G)v , we have X ·σ(C) ⊆ σ((1G)v) ⊆
(1G′)v and it follows that Xv × (σ(C))v ⊆ (1G′)v . Therefore, Xv is v-invertible in G′
and G′ admits a GCD according to Proposition 2.8.

For any embedding h : G �� Γ of a po-group G into an l-group we can construct
the divisor class group �h = Γ/h(G) of this embedding. Hence, we have the following
short exact sequence

1 � �� G
h �� Γ

ϕh �� �h � �� 0. (2.9)

For po-groups with quasi divisor theory this divisor class group has special impor-
tance, since the density condition of h can be substitute by some density condition of
ϕh (see [12, 16]). In the following proposition, we show that even for po-groups with
GCD this short exact sequence has some density property.

Proposition 2.10. Let h : G �� Γ be a GCD theory. Then for any α ∈ Γ ,α > 1,
we have

ϕh
(
Γ \(α)v

)=�h. (2.10)
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Proof. We show firstly that for any β ∈ Γ there exists γ ∈ Γ+ such that ϕh(β) =
ϕh(γ). In fact, according to the proof of Proposition 2.2, (β−1)v∩h(G) �= ∅ and γ =
β·h(g)≥ 1 for some g ∈G. Hence ϕh(β)=ϕh(γ).
Let ϕh(β) ∈ �h. Then from the above statement if follows that −ϕh(β) ∈ ϕh(Γ+)

and there exists δ∈ Γ+ such that −ϕh(β)=ϕh(δ). Moreover, there exists γ ∈ Γ \(α)v
such that δ·γ ∈ h(G). In fact, let us consider the following only possible cases.
(a) α‖δ or α > δ. Then from Proposition 2.2 it follows that h(δ̄) \h(ᾱ) �= ∅. Let

h(g) ∈ h(δ̄)\h(ᾱ). Then h(g) �∈ (α)v and there exists γ ∈ Γ+ such that h(g) = δ ·γ
and γ ∈ Γ+ \(α)v .
(b) α ≤ δ. Then α ·δ > δ ≥ α and h(α·δ) ⊂ h(δ̄). In fact, if the inclusion is not

proper, we have α·δ=∧h(α·δ)=∧h(δ̄)= δ according to Proposition 2.2, a contra-
diction. Let h(g)∈ h(δ̄)\h(α·δ). Then h(g)= γ ·δ for some γ ≥ 1. If γ ≥α, then we
have h(g)≥α·δ, a contradiction. Hence, γ ∈ Γ+ \(α)v .
From this property we obtainϕh(δ)+ϕh(γ)= 0 and γ ∈ Γ+\(α)v . Hence,ϕh(Γ+)⊆

ϕh(Γ+ \(α)v).

3. Groups with complete GCD theories. For a GCD theory h : G �� Γ the set
�v(G) of all v-ideals of G has a special subset, namely {ᾱ :α∈ Γ} ⊆ �v(G), as follows
from Proposition 2.4. A natural question is when this subset equals to �v(G). This
problem is solved by the following proposition.

Proposition 3.1. Let h :G �� Γ be a GCD theory. Then the following statements
are equivalent.
(1) For any v-ideal Av in G there exists α∈ Γ such that Av = ᾱ.
(2) For any lower bounded subset A⊆G there exists

∧
h(A) in Γ .

(3) Γ is a complete l-group.

Proof. (2)⇒(1). Let Av ∈ �v(G) and let α =
∧
h(A). Then A ⊆ ᾱ and since ᾱ is

v-ideal in G, we have Av ⊆ ᾱ. Let g ∈ ᾱ and let b be a lower bound of A. Then
h(g)≥α≥ h(b) and we have g ≥ b. Therefore, g ∈Av and Av = ᾱ.
(1)⇒(3). Let Φ ⊆ Γ be a lower bounded subset and let β ≤ Φ for some β ∈ Γ . For

any α ∈ Φ we have α = ∧h(ᾱ) according to Proposition 2.2. Then ⋃α∈Φ ᾱ is lower
bounded in G. In fact, according to Proposition 2.2, β−1 =∧h(β−1)≤ h(r−1) for some
r−1 ∈ β−1. Then for any g ∈ ⋃α∈Φ ᾱ we have h(g) ≥ α ≥ β ≥ h(r) and r is a lower
bound of

⋃
α∈Φ ᾱ. Let Av = (

⋃
α∈Φ ᾱ)v . Then according to (1), there exists γ ∈ Γ such

that γ̄ =Av . We have γ =
∧
Φ in Γ . In fact, for any α∈ Φ we have ᾱ⊆⋃ρ∈Φ ρ̄ ⊆Av = γ̄

and from Proposition 2.2 it follows that α≥ γ. Further, let ω≤ α for all α∈ Φ. Then
ᾱ ⊆ ω̄ and

⋃
α∈Φ ᾱ ⊆ ω̄. Since ω is v-ideal, we have γ̄ = Av ⊆ ω̄ and it follows that

γ ≥ω by Proposition 2.2.
(3)⇒(2). Trivial.
A GCD theory of a po-group G that satisfies the equivalent conditions of Proposition

3.1 will be called a complete GCD theory. It should be observed that there are examples
of GCD theoryh :G �� Γ such that {ᾱ :α∈ Γ} ⊂ �v(G). In fact, for any non complete
l-group Γ the identity map Γ �� Γ is such example, as follows from the previous
proposition.
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Corollary 3.2. Let h : G �� Γ be a complete GCD theory. Then h is a (v,v)-
morphism.

Proof. Let A ⊆ G be a lower bounded set. Then for α = ∧h(A) we have h(Av) =
h(ᾱ)⊆ (∧h(A))v = (α)v = (h(A))v as follows from Proposition 3.1.

Corollary 3.3. Let h : G �� Γ be a complete GCD theory. Then for any lower
bounded subset Φ ⊆ Γ we have ∧

α∈Φ
α=

∧
α∈Φ

ᾱ. (3.1)

Proof. For any β ≤ Φ in Γ there exists b ∈ G such that h(b) ≤ β. Then b is a
lower bound of

⋃
α∈Φ ᾱ and according to Proposition 3.1, there exists γ ∈ Γ such that

γ̄ = (⋃α∈Φ ᾱ)v =
∧
α∈Φ ᾱ. We prove that γ =

∧
α∈Φα. Since ᾱ⊆ γ̄, it follows that γ ≤α

for any α ∈ Φ. For any ω ∈ Γ such that ω ≤ Φ we have ⋃α∈Φ ᾱ ⊆ ω̄ and since ω̄ is a
v-ideal, we have γ̄ ⊆ ω̄. Hence, γ ≥ω.

Theorem 3.4. Let G be a po-group. Then G admits a complete GCD theory if and
only if it admits a GCD theory h :G �� Γ such that Γ is an Archimedean l-group.

Proof. Let h be a GCD theory such that Γ is Archimedean. It is well known (cf.
[5]) that for any abelian Archimedean l-group Γ its completion Γ̂ can be constructed
such that
(1) Γ̂ is a complete l-group,
(2) Γ is an l-subgroup of Γ̂ ,
(3) Γ is dense in Γ̂ , i.e., for any 1< a ∈ Γ̂ there exists α∈ Γ such that 1<α≤ a,
(4) For any a ∈ Γ̂ we have a =∧{β∈ Γ : β≥ a}.

We observe further that if ∆⊆ Γ is such that α=∧∆ exists in Γ , then α is the infimum
of ∆ in Γ̂ , as well, i.e., we need not to distinguish infimum operations in Γ and Γ̂ . In fact,
let α=∧∆ in Γ and let a ∈ Γ̂ be such that a ≤∆. Then we have α∨a ≤∆ and we have to
show that α∨a =α. Suppose, by the way of contradiction that α∨a >α. Then we have
1< (α∨a)·α−1. Since Γ is dense in Γ̂ , there exists β∈ Γ such that 1< β≤ (α∨a)·α−1.
Hence, for any ω∈∆ we have ω≥α∨a ≥ β·α>α, a contradiction.
Now, let h : G

h �� Γ �� Γ̂ be the composition of h and the embedding of Γ into
Γ̂ . We show that h is a complete GCD theory. Let a ∈ Γ̂ . Then a = ∧β∈Φβ, where Φ =
{β ∈ Γ : β ≥ a}. Since h is a GCD theory, for any β ∈ Φ we have β = ∧h(β̄) = ∧h(β̄)
and it follows that ā =⋃β∈Φ β̄. In fact, for g ∈ ā we have h(g) ≥ a and h(g) ∈ Φ, g ∈
h(g) ⊆⋃β∈Φ β̄ (the other inclusion is trivial). Then we have a =

∧
h(ā) =∧h(⋃β∈Φ β̄).

In fact, let b∈ Γ̂ be such that b≤ h(
⋃
β∈Φ β̄). Then b≤ h(β̄) for any β∈ Φ and we have

b ≤ ∧h(β̄) = ∧h(β̄) = β. Therefore, b ≤ ∧β∈Φβ = a and h is a GCD theory according
to Proposition 2.2.
Conversely, if G admits a complete GCD theory h : G �� Γ , then Γ is a complete

l-group and it follows that Γ is Archimedean.

From this theorem it follows that, in general, GCD theory is not unique. In fact, let
h : G �� Γ be a GCD theory that is not complete and let Γ be an Archimedean l-
group. Then h : G �� Γ̂ is a (complete) GCD theory and Γ is not isomorphic to Γ̂ .
This answers in negative the question of Lucius [10].
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Although for a GCD theory h : G �� Γ the inclusion relation {ᾱ : α ∈ Γ} ⊆ �v(G)
can be a proper inclusion, the set of v-ideals of the form ᾱ is even in this case dense in
�v(G). In the following proposition, we show that even for general GCD theory, �v(G)
represents a lattice completion of the set {ᾱ :α∈ Γ}. Moreover, from Proposition 2.5 it
follows that (Γ ,·,≤) is isomorphic to ({ᾱ :α∈ Γ},×,≤) and from the next proposition
it follows that �v(G) represents the lattice completion of the lattice (Γ ,∧).

Proposition 3.5. Let h :G �� Γ be a GCD theory. Then the following statements
hold.
(1) For any lower bounded subset φ⊆ Γ there exists

∧
α∈Φ ᾱ in �v(G).

(2) For any v-ideal Av in G there exists a lower bounded subset Φ in Γ such that
Av =

∧
α∈Φ ᾱ.

Proof. (1) Let β be a lower bound of Φ. From Proposition 2.2 it follows that there
exists b ∈G such that h(b)≤ β and it follows that b is a lower bound of⋃α∈Φ ᾱ. Then
it is clear that (

⋃
α∈Φ ᾱ)v =

∧
α∈Φ ᾱ.

(2) Let Av ∈ �v(G). We set Φ = {α∈ Γ :Av ⊆ ᾱ}. Then it is clear that Φ �= ∅ since, for
example, for any finite K ⊆Awe have∧h(K)∈ Φ. Then⋃α∈Φ ᾱ⊆Av is lower bounded
and we have

∧
α∈Φ ᾱ = (

⋃
α∈Φ ᾱ)v = Av . In fact, the inclusion ⊆ is trivial. Let a ∈ Av ,

then for any g ∈ h(a) we have g ∈ (a)v ⊆Av and it follows that h(a)∈ Φ. Therefore,
a∈ h(a)⊆ (⋃α∈Φ ᾱ)v .

Proposition 3.6. Leth :G �� Γ be a complete GCD theory. Then :̄ (Γ ,·,≤) ��

(�v(G),×,≤) is a complete l-isomorphism with the inverse l-isomorphism χ such that
χ(Av)=

∧
h(Av)=

∧
h(A) for any Av ∈ �v(G).

Proof. From Proposition 2.5 it follows that¯is an o-isomorphism into. Let Av ∈
�v(G). Then from Proposition 3.5 and corollary of Proposition 3.1 it follows that
Av =

∧
α∈Φ ᾱ=

∧
α∈Φα. Hence,¯is surjective and complete l-homomorphism. Further,

we show that for any Av ∈ �v(G),
∧
h(Av)=

∧
h(A). In fact, let α=∧h(A), then ac-

cording to Proposition 2.4, we have ᾱ=Av . Hence, for any a∈Av we have h(a)≥ α
and it follows that α = ∧h(A) ≥ ∧h(Av) ≥ α. Hence, χ(Av) =

∧
h(Av) =

∧
h(A).

Moreover, χ is a group homomorphism. In fact, we have

χ
(
Av×Bv

)= χ((A·B)v)=∧h(A·B)=
∧
h(A)·

∧
h(B)= χ(Av)·χ(Bv). (3.2)

Further, χ and¯are mutually inverse maps. In fact, for α∈ Γ we have χ(ᾱ)=∧h(ᾱ)=
α as follows from Proposition 2.2, and for Av ∈ �v(G) we have χ(Av) =

∧
h(Av) =∧

h(A)=Av , according to Proposition 2.4. Finally, χ is a complete l-homomorphism.
In fact, let �⊆ �v(G) be a lower bounded subset and let Φ = χ(�)⊆ Γ . Then Φ is lower
bounded and for α= χ(Av) we have ᾱ=Av . Then we obtain

χ


 ∧
Av∈�

Av


= χ


∧
α∈Φ

ᾱ


= χ


∧
α∈Φ

α


= ∧

α∈Φ
α=

∧
Av∈�

χ
(
Av
)

(3.3)

according to the corollary of Proposition 3.1.
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Corollary 3.7. Let G be a po-group. Then G admits a complete GCD theory if and
only if any v-ideal of G is v-invertible.

Proof. Let G admits a complete GCD theory. Then according to the previous
Proposition 3.6, (�v(G),×) is a group. Conversely, let �v(G) be a group. Then it is
clear that it is a complete l-group, where for any lower bounded subset Φ ⊆ �v(G),
the set B = ⋃Av∈ΦA is lower bounded in G and Bv =

∧
Av∈ΦAv . Moreover, for any

v-ideal Av we have Av = (
⋃
a∈A(a)v)v =

∧
a∈A(a)v . Therefore, the embedding (·)v :

G �� �v(G) is a complete GCD theory according to Propositions 2.2 and 3.1.

Corollary 3.8. Any po-group G admits at most (up to o-isomorphisms) one com-
plete GCD theory.

Proof. Let h :G �� Γ be a complete GCD theory. Since Γ is a complete l-group,
it is Archimedean and according to Proposition 3.6, Γ is o-isomorphic to �v(G).
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