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BOEHMIANS ON MANIFOLDS

PIOTR MIKUSIŃSKI
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Abstract. The construction of Boehmians on amanifold requires a commutative convolu-
tion structure. We present such constructions in two specific cases: anN-dimensional torus
and an N-dimensional sphere. Then we formulate conditions under which a construction
of Boehmians on a manifold is possible.
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1. Introduction. Boehmians were first constructed as a generalization of regular
Mikusiński operators [1, 3]. The purpose of that construction was to produce a space
of generalized functions defined as convolution quotients, but without any restriction
on the support. Almost all papers on Boehmians published to date concern objects
defined on RN . Because of a certain inflexibility of Boehmians (see [6]) and their global
character, there is no obvious way to construct Boehmians onmanifolds. In this paper,
we present a framework that seems to be well suited for Boehmians on manifolds. In-
stead of defining Boehmians locally on a manifold by coordinate patches, we use the
“internal convolution structure” of a manifold. To this aim we choose the language
of locally compact groups, which provides a very natural setting for the construction.
Boehmians on locally compact Abelian groups were already considered by Nemzer
in [9]. However, many manifolds do not have a natural commutative group structure.
The method proposed here generalizes the idea used in [7] where a construction of
Boehmians on the N-dimensional sphere uses the convolution algebra of continuous
functions defined on the group of rotations of the sphere. A construction of Boehmi-
ans on the sphere was given earlier in [8]. Themethod used there ismore dependent on
special properties of the sphere and does not seem to lead to natural generalizations.
The minimal structure necessary for the construction of Boehmians consists of the

following elements:
(I) a nonempty set �,
(II) a commutative semigroup (�,∗),
(III) an operation � : �×� → � such that for every x ∈ � and s1,s2 ∈ � we have

x�(s1∗s2)= (x�s1)�s2,
(IV) a nonempty collection ∆⊂�N such that

(a) if x,y ∈�, (sn)∈∆, and x�sn =y�sn for all n∈N, then x =y ,
(b) if (sn),(tn)∈∆, then (sn∗tn)∈∆.

Elements of ∆ will be called delta sequences. Let

�= {(xn,sn
)
: xn ∈�,

(
sn
)∈∆, and xn�sm = xm�sn ∀m,n∈N}. (1.1)
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If (xn,sn),(yn,tn)∈� andxn�tm =ym�sn, for allm,n∈N, then we write (xn,sn)∼
(yn,tn). The relation ∼ is an equivalence in �. It is trivially reflexive and symmetric.
To prove that it is transitive assume that (xn,rn) ∼ (yn,sn) and (yn,sn) ∼ (zn,tn).
Fix an arbitrary k∈N. Then

(
xn�tm

)�sk = xn�
(
tm∗sk

)= xn�
(
sk∗tm

)= (xn�sk
)�tm

= (yk�rn
)�tm = (yk�tm

)�rn = (zm�sk)�rn
= (zm�rn)�sk.

(1.2)

Since m,n∈N are arbitrary and (xn�tm)�sk = (zm�rn)�sk for all k∈N, we must
have xn�tm = zm�rn for all m,n∈N.
The space of equivalence classes in � will be denoted by �(�). Elements of �(�)

are called Boehmians. To simplify the notation, the equivalence class of (xn,sn) will
be denoted by xn/sn. There is a canonical embedding of � into �(�):

x 
 �→ x�sn
sn

. (1.3)

It is easy to check that this mapping is independent of a particular delta sequence
(sn). The operation � can be extended to �(�)×�:

xn

sn
�t = xn�t

sn
. (1.4)

Conditions (III) and (IV)(a) hold for this extension. If � has an additional structure, it
can usually be extended to �(�) (cf. [4] or [5]).
In most examples we have � ⊂ � and � = ∗. For applications to generalized func-

tions we usually take � and � to be spaces of functions defined on a common domain
and the operation is a convolution product.

2. Boehmians on TN and SN−1. First we consider Boehmians on theN-dimensional
torus. Let T = [0,1] and let + indicate addition modulo 1. This operation extends to
TN in an obvious way and makes TN a commutative group. For f ,g ∈ L1(TN), we
define

(f ∗g)(x)=
∫
TN

f (z)g(x−z)dz, (2.1)

where dz indicates integration with respect to the Lebesgue measure on TN . Let � =
�= L1(TN), �=∗ as defined in (2.1), and let ∆ be the collection of all sequences ϕ1,
ϕ2, . . .∈ L1(TN) satisfying the following conditions:

(1) ϕn ≥ 0 for all n∈N,
(2)

∫
TN ϕn = 1 for all n∈N,

(3) for every ε ∈ (0,1/2) there exists an n0 ∈ N such that ϕn(x) = 0 for all x ∈
[ε,1−ε]N and for all n≥n0.

Clearly, conditions (I), (II), (III), and (IV) are satisfied and thus the construction of
Boehmians on TN is possible. Note that we do not encounter any difficulties in this ex-
ample since TN and, consequently, the convolution algebra L1(TN) are commutative.
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Now we turn to the sphere SN−1. There is no natural group structure on SN−1 and
thus no natural convolution in L1(SN−1).
Let eN = (0, . . . ,0,1) ∈ RN and let � denote the set of all rotations in Rn. Let �0 =

{T ∈� | TeN = eN} and

�= {ϕ ∈ L∞
(
SN−1

) |ϕ◦T =ϕ ∀T ∈�0
}
. (2.2)

The convolution of f ∈ L1(SN−1) and ϕ ∈� is defined by

(f ∗ϕ)(x)= (f ∗ϕ)
(
TxeN

)=
∫
SN−1

f(z)ϕ
(
T−1x z

)
dz, (2.3)

where x ∈ SN−1, and Tx ∈� is such that TxeN = x. Sinceϕ ∈�, f∗ϕ does not depend
on the choice of a particular Tx ∈�, and thus f ∗ϕ is well defined. Now we can take
� = L1(SN−1), � = �, ∗ and � both defined by (2.3), and ∆ to be the collection of all
sequences ϕ1, ϕ2, . . .∈� satisfying the following conditions:

(1) ϕn ≥ 0 for all n∈N,
(2)

∫
SN−1ϕn = 1 for all n∈N,

(3) for every neighborhood V of eN there exists an n0 ∈N such that suppϕn ⊂ V
for all n≥n0.

One can prove that conditions (I), (II), (III), and (IV) are satisfied and the construction
of Boehmians on SN−1 is possible. This construction of Boehmians on the sphere SN−1

in RN was presented in [8].

3. Boehmians on locally compact groups. The framework of locally compact
groups is particularly well suited for the construction of Boehmians. It provides a
simple way of constructing Boehmians on certain manifolds that are locally compact
groups. Moreover, some results from this section will be useful in the more general
situation considered in Section 4.
Let G be a locally compact group, e the identity element of G, and L1(G) the convo-

lution algebra of integrable functions with respect to the left Haar measure on G. The
convolution in L1(G) is defined by

(ϕ∗ψ)(x)=
∫
G
ϕ(z)ψ

(
z−1x

)
dx. (3.1)

By �(G) we denote the center of L1(G), i.e., ϕ ∈�(G) if and only if f ∗ϕ =ϕ∗f for
all f ∈ L1(G). The following simple characterization of �(G) will be useful (see [2]).

Lemma 3.1. Let G be a unimodular locally compact group. Then f ∈ �(G) if and
only if f(xy)= f(yx) for all x,y ∈G.

A sequence ϕ1, ϕ2, . . .∈ L1(G), will be called a delta sequence if
(1) ϕn ∈�(G) for all n∈N,
(2) ϕn ≥ 0 for all n∈N,
(3)

∫
Gϕn = 1 for all n∈N,

(4) for every neighborhood V of e there exists an n0 ∈ N such that suppϕn ⊂ V
for all n≥n0.
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Lemma 3.2. Let (ϕn) and (ψn) be delta sequences.
(a) If f ∈ L1(G) and f ∗ϕn = 0 for all n∈N, then f = 0.
(b) (ϕn∗ψn) is a delta sequence.

Definition 3.3. A locally compact group G is called a B-group if there exists a
delta sequence in L1(G).

In every locally compact group there exist approximate identities. Since we need
existence of delta sequences, as opposed to nets, we will have to assume that G is first
countable. Clearly every first countable locally compact Abelian group is a B-group.

Theorem 3.4. Every first countable compact group is a B-group.

Proof. It suffices to show that for every neighborhood U of e there is a ϕ ∈�(G)
such that suppϕ ⊂U . Let U be an arbitrary neighborhood of e. Define

F = {zxz−1 : z ∈G and x ∈G\U} and V =G\F. (3.2)

Then V is a neighborhood of e. Clearly, e ∈ V . Moreover, since F is the continuous
image of the compact set G×(G\U), it is a closed subset of G. Thus V is open. Let ψ
be the characteristic function of V . Define

ϕ(x)=
∫
ψ
(
zxz−1

)
dz. (3.3)

Sinceψ(zxz−1)= 0 for every z ∈G and x ∈G\U ,ϕ(x)= 0 for every x ∈G\U , which
means that suppϕ ⊂ U . Finally, to see that ϕ ∈ �(G), note that ϕ(xy)=ϕ(yx) for
all x,y ∈G and then use Lemma 3.1.

If G is a B-group, then we can take � = L1(G), S = �(G), the convolution in L1(G)
for both � and ∗, and finally, the collection of all delta sequences in �(G) for ∆. Then
all conditions necessary for the construction of Boehmians are satisfied. The obtained
space of Boehmians will be denoted by �(L1(G)), or simply by �(G).
As in the general case, L1(G) can be identified with a subset of �(G) via

ι(f )= f ∗ϕn

ϕn
. (3.4)

Then ι(f ∗ψ) = ι(f )∗ψ. If, for some F ∈ �(G), f ∈ L1(G), and ϕ ∈ �(G), we have
F∗ϕ = ι(f ), we simply write F∗ϕ = f . For example, if F = fn/ϕn, then F∗ϕk = fk
for any k∈N.
A sequence of Boehmians (Fn) is said to converge to zero in �(G) if there exists

a delta sequence (ϕn) such that Fn∗ϕn ∈ L1(G), for all n ∈ N, and Fn∗ϕn → 0 in
L1(G). Convergence to an arbitrary limit F is defined by Fn−F → 0 in �(G). With this
convergence in �(G) the mapping ι is continuous.

4. Boehmians on manifolds. The method presented in this section was suggested
by the construction of Boehmians on the sphere introduced in [7]. It is different from
the approach used in [8]. Our intention here is to describe amethod that can be applied
to a variety of manifolds.
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Let � be a σ -compact manifold and let � be a locally compact group of transfor-
mations on � such that:

(a) every T ∈� is a homeomorphism of �,
(b) for every f ∈	(�) the mapping T � f ◦T is continuous,
(c) for every x,y ∈� there exists a T ∈� such that Tx =y .
For f ∈	(�) and ϕ ∈ L1(�) define

(f �ϕ)(x)=
∫

�
f
(
T−1x

)
ϕ(T)dT . (4.1)

Lemma 4.1. Let (ϕn) be a delta sequence in L1(J) and let f ∈	(�). Then f�ϕn→
f in 	(�).

Proof. Let K be a compact subset of �. Then

sup
x∈K

∣∣f �ϕn(x)−f(x)
∣∣= sup

x∈K

∣∣∣∣
∫

�
f
(
T−1x

)
ϕn(T)dT −f(x)

∣∣∣∣
= sup

x∈K

∣∣∣∣
∫

�
f
(
T−1x

)
ϕn(T)dT −f(x)

∫
�
ϕn(T)dT

∣∣∣∣
≤ sup

x∈K

∫
�

∣∣(f (T−1x)−f(x))ϕn(T)
∣∣dT

≤ sup
x∈K

sup
T∈suppϕn

∣∣f (T−1x)−f(x)∣∣.

(4.2)

Since suppϕn→ I (I denotes the identity operator on �), we have

sup
x∈K

sup
T∈suppϕn

∣∣f (T−1x)−f(x)∣∣ �→ 0 as n→∞, (4.3)

by (b).

Lemma 4.2. For f ∈	(�) and ϕ,ψ∈ L1(J) we have

f �(ϕ∗ψ)= (f �ψ)�ϕ. (4.4)

Proof.

(
f �(ϕ∗ψ)

)
(x)=

∫
�
f
(
T−1x

)
(ϕ∗ψ)(T)dT

=
∫

�
f
(
T−1x

)∫
�
ϕ(S)ψ

(
S−1T

)
dSdT

=
∫

�

∫
�
f
(
T−1x

)
ψ
(
S−1T

)
dT ϕ(S)dS

=
∫

�

∫
�
f
(
T−1S−1x

)
ψ(T)dTϕ(S)dS

=
∫

�
(f �ψ)

(
S−1x

)
ϕ(S)dS

= ((f �ψ)�ϕ)(x).

(4.5)

Note that for ϕ,ψ∈�(J) we have

f �(ϕ∗ψ)= (f �ϕ)�ψ for every f ∈	(�). (4.6)
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If � is a B-group, then the construction of Boehmians is possible for � = 	(�),
�=�(�), and ∗ and � as defined above. For example, if we can find a locally compact
group of transformations � on � that is first countable and Abelian or first countable
and compact, then we can construct Boehmians on �. For � = SN−1 we can use the
group of all rotations. It is a first countable compact group and therefore the described
method can be used. Note that this approach is not a direct generalization of the
construction sketched in Section 2.
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