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Abstract. We show the strong unique continuation property of the eigenfunctions for
p-Laplacian operator in the case p <N .
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1. Introduction. This paper is primarily concerned with the problem:

−div(|∇u|p−2∇u)+V |u|p−2u= 0 in Ω, (1.1)

where Ω is a bounded domain in RN and the weight functions V is assumed to be not
equivalent to zero and to lie in LN/p(Ω).
Also, we know that the unique continuation property is defined by a different form.

In this work, we are interested to study a family of functions which enjoys the strong
unique continuation property (SUCP), that is, functions besides possibly the zero func-
tions has a zero of infinite order.

Definition 1.1. A function u ∈ Lp(Ω) has a zero of infinite order in p-mean at
x0 ∈Ω, if for each n∈N,

∫
|x−x0|≤R

|u|p = 0
(
Rn) as R �→ 0. (1.2)

There is an extensive literature on unique continuation. We refer to the work of
Jerison-Kenig on the unique continuation for Shrödinger operators (cf. [3]). The same
work is done by Gossez and Figueiredo, but for linear elliptic operator in the case V ∈
LN/2, whereN > 2, (cf. [1]). Also, Loulit extended this property toN = 2 by introducing
Orlicz’s space, (cf. [2, 5]). In this work, we generalize this property for the p-Laplacian
in the case V ∈ LN/p(Ω) and p <N .

2. Strong unique continuation theorem. In this section, we proceed to establish
the strong unique continuation property of the eigenfunctions for the p-Laplacian
operator in the case V ∈ LN/p(Ω) and p <N .

Theorem 2.1. Let u ∈ W 1,p
loc (Ω) solution of (1.1). If u = 0 on a set E of positive

measure, then u has a zero of infinite order in p-mean.
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To prove this theorem we need the following lemmas.

Lemma 2.2. Let g ∈W 1,p
0 (Ω) and V ∈ LN/p . Then for each ε > 0 there exists a positive

constant kε such that ∫
Ω
V |g|p ≤ ε

∫
Ω
|∇g|p+kε

∫
Ω
|g|p. (2.1)

Proof. Set

G =
{
x ∈ Ω

V(x)
≥ c

}
. (2.2)

So ∫
Ω
V |g|p ≤

∫
G
V |g|p+k

∫
Ω
|g|p. (2.3)

By using the Hölder and Poincaré’s inequalities, we get∫
Ω
V |g|p ≤ c∥∥χGV∥∥N/pL

∫
Ω
|∇g|p+k

∫
Ω
|g|p. (2.4)

But ‖·‖ is absolutely continuous. So, given ε > 0, there exists k such that c‖χGV‖ ≤ ε.
Which gives immediately the inequality (2.1).

Lemma 2.3. Let Br and B2r be two concentric balls contained in Ω. Then∫
Br
|∇u|p ≤ c

rp

∫
B2r
|u|p, (2.5)

where the constant c does not depend on r .

Proof. Takeϕ ∈ C∞0 (Ω), with suppϕ ⊂ B2r ,ϕ(x)= 1 for x ∈ Br and |∇ϕ| ≤ c/r .
Using ϕpu as a test function in (1.1), we get∫

B2r
−div(|∇u|p−2∇u)ϕpu+

∫
B2r

V |u|p−2uϕpu= 0. (2.6)

So ∫
B2r
|∇u|pϕp =−p

∫
B2r
|∇u|p−2ϕp−2∇u·∇ϕ(ϕu)−

∫
B2r

V |ϕu|p. (2.7)

Using Young’s inequalities for (((p−1)/p)+1/p = 1), we can estimate the first inte-
gral in the right-hand side of (2.7) by

(p−1)εp/(p−1)
∫
B2r
|∇u|pϕp+ε−p

∫
B2r
|∇ϕ|p|u|p. (2.8)

Also by the result of Lemma 2.2, we can estimate the second integral in the right-hand
side of (2.7) by

ε
∫
B2r

∣∣∇(ϕu)∣∣p+cε
∫
B2r
|ϕu|p. (2.9)

Using these estimates in (2.7), we have∫
B2r
|∇u|pϕp ≤ ((p−1)εp/(p−1)+ε)

∫
B2r
|∇u|p|ϕ|p

+(ε−p+ε)
∫
B2r
|u|p|∇ϕ|p+cε

∫
B2r
|u|p|ϕ|p.

(2.10)

Using the fact that |∇ϕ| ≤ c/r , |ϕ| ≤ c/r , and ϕ = 1 in Br , we have immediately
inequality (2.5).
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Lemma 2.4. Let u ∈ W 1,1(Br ), where Br is the ball of radius r in RN and let E =
{x ∈ Br :u(x)= 0}. Then there exists a constant β depending only on N such that

∫
A
|u| ≤ βr

N

|E| |A|
1/N

∫
Br
|∇u| (2.11)

for all ball Br , u as above and all measurable sets A⊂ Br .
To prove this lemma see [4].

Proof of Theorem 2.1. We know that almost every point of E is a point of den-
sity of E. Let x0 ∈ E be such a point. This means that

lim
r→0

∣∣E∩Br∣∣∣∣Br∣∣ = 1, (2.12)

where Br denotes the ball of radius r centered at x0 and |S| denotes the Lebesgue
measure of a set S. So, given ε > 0 there is an r0 = r0(ε) such that

∣∣Ec∩Br∣∣∣∣Br∣∣ < ε,
∣∣E∩Br∣∣∣∣Br∣∣ > 1−ε for r ≤ r0, (2.13)

where Ec denotes the complement of the set E. Taking r0 smaller, if necessary, we can
assume Br0 ⊂Ω. Since u= 0 on E, by Lemma 2.4 and (2.13) we have

∫
Br
|u|p =

∫
Br∩Ec

|u|p ≤ β rN∣∣E∩Br∣∣ |E
c∩Br |1/N

∫
Br

∣∣∇(u)p∣∣

≤ pβ rN∣∣Br∣∣(1−1/N)
ε1/N

1−ε
∫
Br
|u|p−1|∇u|.

(2.14)

By Hölder’s inequality

∫
Br
|u|p ≤ c ε

1/N

1−εr
(∫

Br
|∇u|p

)1/p(∫
Br
|u|p

)(p−1)/p
, (2.15)

and by using the Young’s inequality, we get

∫
Br
|u|p ≤ c ε

1/N

1−ε r
(
rp−1

∫
Br
|∇u|p+ p−1

r

∫
Br
|u|p

)
. (2.16)

Finally, by Lemma 2.3, we have

∫
Br
|u|p ≤ c ε

1/N

1−ε
∫
B2r
|u|p, (2.17)

where c is independent of ε and of r as r → 0.



216 I. E. HADI AND N. TSOULI

Now let us introduce the following functions:

f(r)=
∫
Br
|u|p. (2.18)

And let us fix n ∈ N, choose ε > 0 such that
(
cε1/N

)
/(1− ε) ≤ 2−n. Observe that

consequently r0 depends on n. Then (2.17) can be written as

f(r)≤ 2−nf(2r) for r ≤ r0. (2.19)

Iterating (2.19), we get

f(ρ)≤ 2−knf
(
2kρ

)
, if 2k−1ρ ≤ r0. (2.20)

Now given 0< r < r0(n) and choose k∈N such that

2−kr0 ≤ r ≤ 2−k+1r0. (2.21)

From (2.20), we obtain

f(r)≤ 2−knf
(
2kr

)≤ 2−knf
(
2r0

)
. (2.22)

Since 2−k ≤ r/r0, we finally obtain

f(r)≤
(
r
r0

)n
f
(
2r0

)
, (2.23)

which shows that x0 is a zero infinite order in p-mean.
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