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ON SOME CLASSES OF BCH-ALGEBRAS
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Abstract. The concept of a BCH-algebra is a generalization of the concept of a BCI-algebra.
It is shown that weakly commutative BCH-algebras are weakly commutative BCI-algebras.
Moreover, the concepts of weakly positive implicative and weakly implicative BCH-algebras
are defined and it is shown that every weakly implicative BCH-algebra is a weakly positive
implicative BCH-algebra. The weakly positive implicative BCH-algebras are characterized
with the help of their self maps. Two open problems are posed.
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1. Introduction. In 1966, Imai and Iséki introduced two classes of abstract alge-
bras, BCK-algebras and BCI-algebras [6, 7]. BCI-algebras are a generalization of BCK-
algebras. These algebras have been extensively studied since their introduction. In
1983, Hu and Li [4, 5] introduced the notion of a BCH-algebra, which is a generaliza-
tion of the notions of BCK- and BCI-algebras. They have studied a few properties of
these algebras. Certain other properties have been studied by Chaudhry [2] and Dudek
and Thomys [3]. It has been shown [3, 4, 5] that there are no proper associative and
medial BCH-algebras, that is, associative and medial BCH-algebras are associative and
medial BCI-algebras, respectively.
The purpose of this paper is to investigate the existence of certain classes of proper

BCH-algebras and study their properties. It is shown that proper weakly commutative
BCH-algebras do not exist. However, proper weakly positive implicative and proper
weakly implicative BCH-algebras exist and every weakly implicative BCH-algebra is a
weakly positive implicative BCH-algebra but not conversely. Weakly positive implica-
tive BCH-algebras have been characterized in terms of their self maps. The results
proved in this paper are general in the sense that corresponding results for BCK-
algebras and BCI-algebras become special cases.

2. Preliminaries. In this section, we describe certain definitions, known results,
and examples that will be used in the sequel.

Definition 2.1 (see [9]). A BCI-algebra is an algebra (X,∗,0) of type (2, 0) satisfying
the following conditions:

(1) (x∗y)∗(x∗z)≤ z∗y ,
(2) x∗(x∗y)≤y ,
(3) x ≤ x,
(4) x ≤y and y ≤ x imply x =y ,
(5) x ≤ 0 implies x = 0, where x ≤y is defined by x∗y = 0.
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If (5) is replaced by 0≤ x, then the algebra is called a BCK-algebra. It is known that
every BCK-algebra is a BCI-algebra but not conversely. Further, in a BCI-algebra the
identity (x∗y)∗z = (x∗z)∗y holds [9].

Definition 2.2 (see [4]). A BCH-algebra is an algebra (X,∗,0) of type (2, 0) satis-
fying the following conditions:

(3) x ≤ x,
(4) x ≤y, y ≤ x imply x =y ,
(6) (x∗y)∗z = (x∗z)∗y , where x ≤y if and only if x∗y = 0.
In any BCH-algebra, the following hold:
(2) x∗(x∗y)≤y [4],
(5) x∗0= 0 implies x = 0 [4],
(7) 0∗(x∗y)= (0∗x)∗(0∗y) [3],
(8) x∗0= x [3],
(9) (x∗y)∗x = 0∗y [4],

(10) x ≤y implies 0∗x = 0∗y [2].

It is known that every BCI-algebra is a BCH-algebra but the following example shows
that the converse is not true.

Example 2.3 (see [4]). Let X = {0,1,2,3} in which ∗ is defined by:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 3 3

2 2 0 0 2

3 3 0 0 0

Then (X,∗,0) is a BCH-algebra but it is not a BCI-algebra because
(
2∗3)∗(2∗1)= 2∗0= 2 �≤ 1∗3= 3. (2.1)

Example 2.4 (see [2]). Let X = {0,1,2,3,4} in which ∗ is defined by:

∗ 0 1 2 3 4

0 0 0 0 0 4

1 1 0 0 1 4

2 2 2 0 0 4

3 3 3 3 0 4

4 4 4 4 4 0

Routine calculations give that (X,∗,0) is a BCH-algebra but it is not a BCI-algebra
because

(
1∗3)∗(1∗2)= 1∗0= 1 �≤ 2∗3= 0. (2.2)

In the sequel a BCH-algebra will be simply denoted by X.

Definition 2.5 (see [5]). A BCH-algebra X is called proper if it is not a BCI-algebra.
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We note that BCH-algebras of Examples 2.3 and 2.4 are proper BCH-algebras.

Definition 2.6 (see [4]). A BCH/BCI-algebra X is called associative if (x∗y)∗z =
x∗(y∗z).

Definition 2.7 (see [3]). A BCH/BCI-algebra X is called medial if (x∗y)∗(z∗µ)=
(x∗z)∗(y∗µ).
In the sequel, we shall need the following result.
(11) A BCH-algebra X is proper if and only if it does not satisfy (1) (see [4]).

3. Classification of BCH-algebras. It is known that associative BCH-algebras are
associative BCI-algebras and medial BCH-algebras are medial BCI-algebras [3, 4]. Thus
a natural question arises whether there exist some interesting classes of proper BCH-
algebras or not? We show that there exist proper weakly positive implicative BCH-
algebras as well as weakly implicative BCH-algebras. Moreover, the class of weakly im-
plicative BCH-algebras is a proper subclass of the class of weakly positive implicative
BCH-algebras. However, weakly commutative BCH-algebras are weakly commutative
BCI-algebras.

Definition 3.1 (see [8]). A BCK-algebraX is called positive implicative if (x∗y)∗z
= (x ∗ z)∗ (y ∗ z). It is called implicative if x ∗ (y ∗x) = x. It is commutative if
x∗(x∗y)=y∗(y∗x).
It is well known that positive implicative BCI-algebras, implicative BCI-algebras

and commutative BCI-algebras are positive implicative BCK-algebras, implicative
BCK-algebras and commutative BCK-algebras, respectively [9].
In [1], Chaudhry defined three classes of proper BCI-algebras, namely, weakly pos-

itive implicative BCI-algebras, weakly implicative BCI-algebras, and weakly commuta-
tive BCI-algebras. He also investigated a few properties of these algebras. We recall
these definitions and the following result.

Definition 3.2 (see [1]). A BCI-algebra X is called weakly positive implicative if
(12) (x∗y)∗z = ((x∗z)∗z)∗(y∗z).

It is called weakly implicative if
(13) (x∗(y∗x))∗(0∗(y∗x))= x.

It is called weakly commutative if
(14) (x∗(x∗y))∗(0∗(x∗y))=y∗(y∗x).
Theorem 3.3 (see [1]). A BCI-algebra X is weakly positive implicative if and only if
(15) x∗y = ((x∗y)∗y)∗(0∗y).
We note that Theorem 3.3 tells us that (12) and (15) are equivalent in a BCI-algebra.

However, they are not equivalent in a BCH-algebra. We consider the BCH-algebra X of
Example 2.4. Then easy calculations give that (15) is satisfied but (12) is not satisfied
because (1∗2)∗3= 0≠ 1= ((1∗3)∗3)∗(2∗3). Further the following theorem tells
us that BCH-algebras satisfying (12) are BCI-algebras.

Theorem 3.4. A BCH-algebra satisfying (x∗y)∗z = ((x∗z)∗z)∗ (y ∗z) is a
BCI-algebra.
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Proof. In view of (11) it is sufficient to prove that (1) holds.
Consider
((
x∗y)∗(x∗z))∗(z∗y)= ((x∗(x∗z))∗y)∗(z∗y)

= (((x∗y)∗y)∗((x∗z)∗y))∗(z∗y) (by (12))

= (((x∗y)∗y)∗(z∗y))∗((x∗z)∗y)

= ((x∗z)∗y)∗((x∗z)∗y) (by (12))

= 0.
(3.1)

This completes the proof.

In view of Theorems 3.3 and 3.4 and the comments made between them, we adopt
the following definitions for BCH-algebras.

Definition 3.5. A BCH-algebra X is weakly positive implicative if

x∗y = ((x∗y)∗y)∗(0∗y) ∀x,y ∈X. (3.2)

We note that the BCH-algebra of Example 2.4 satisfies (3.2). Thus there exist proper
weakly positive implicative BCH-algebras.

Definition 3.6. A BCH-algebra X is weakly implicative if

(
x∗(y∗x))∗(0∗(y∗x))= x ∀x,y ∈X. (3.3)

Definition 3.7. A BCH-algebra X is weakly commutative if

(
x∗(x∗y))∗(0∗(x∗y))=y∗(y∗x). (3.4)

Theorem 3.8. Every weakly implicative BCH-algebra X is a weakly positive implica-
tive BCH-algebra.

Proof. Let X be weakly implicative. Then

(
x∗(z∗x))∗(0∗(z∗x))= x. (3.5)

Putting x = z∗x in (3.5), we get

((
z∗x)∗(z∗(z∗x)))∗(0∗(z∗(z∗x)))= z∗x. (3.6)

Since z∗(z∗x)≤ x, therefore (10) gives 0∗(z∗(z∗x))= 0∗x. Thus

z∗x = ((z∗x)∗(z∗(z∗x)))∗(0∗x)= ((z∗(z∗(z∗x)))∗x)∗(0∗x). (3.7)

Now
(
z∗x)∗(z∗(z∗(z∗x)))

= ((z∗(z∗(z∗x))∗x)∗(0∗x))∗(z∗(z∗(z∗x)))

= ((z∗(z∗(z∗x))∗x)∗(z∗(z∗(z∗x))))∗(0∗x)

= (0∗x)∗(0∗x)= 0.

(3.8)
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Hence z∗x ≤ z∗(z∗(z∗x))≤ z∗x. Thus
z∗(z∗(z∗x))= z∗x (3.9)

holds in a weakly implicative BCH-algebra. Putting (3.9) in (3.7) we get z ∗ x =
((z∗x)∗x)∗ (0∗x). Hence, X is weakly positive implicative. This completes the
proof.

Remark 3.9. It is known that 0∗x = 0∗ (0∗ (0∗x)) holds in a BCH-algebra [3],
but it is still not known that in a BCH-algebra the identity x∗y = x∗ (x∗ (x∗y))
holds or not, although it holds in BCI-algebras and weakly implicative BCH-algebras
(as shown in (3.9)).

Remark 3.10. Since every BCI-algebra is a BCH-algebra and weak positive implica-
tiveness and weak implicativeness coincide with positive implicativeness and implica-
tiveness, respectively, in BCK-algebras [1], therefore the following results of Chaudhry
and Iséki follow as corollaries of Theorem 3.4.

Corollary 3.11 (see [1]). Every weakly implicative BCI-algebra is a weakly positive
implicative BCI-algebra.

Corollary 3.12 (see [8]). Every implicative BCK-algebra is a positive implicative
BCK-algebra.

Theorem 3.13. A BCH-algebra X satisfying (x∗(x∗y))∗(0∗(x∗y))=y∗(y∗x)
is a BCI-algebra.

Proof. It is sufficient to show that (1) holds. We consider
((
x∗y)∗(x∗z))∗(z∗y)

= ((x∗(x∗z))∗y)∗(z∗y)

= (((z∗(z∗x))∗(0∗(z∗x)))∗y)∗(z∗y) (by given condition)

= (((z∗(z∗x))∗y)∗(0∗(z∗x)))∗(z∗y)

= (((z∗y)∗(z∗x))∗(0∗(z∗x)))∗(z∗y)

= (((z∗y)∗(z∗y))∗(z∗x))∗(0∗(z∗x))

= (0∗(z∗x))∗(0∗(z∗x))= 0.

(3.10)

This completes the proof.

We now pose the following open problem.

Open problem 1. Do there exist classes of proper BCH-algebras other than the
classes of weakly positive implicative and weakly implicative BCH-algebras, which are
generalizations of the known classes of BCI- as well as BCK-algebras.

4. Characterization of weakly positive implicative BCH-algebras. In this section,
we characterize weakly positive implicative BCH-algebras by their self maps.

Definition 4.1. Let X be a BCH-algebra. For a fixed x in X, the map Rx : X → X
given by Rx(t)= t∗x for all t ∈X is called a right self map.
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Definition 4.2. Let X be a BCH-algebra. For a fixed x in X, the map R′x : X → X
given by R′x(t)= (t∗x)∗(0∗x) for all t ∈X is called a weak right self map.

The following theorem gives us a characterization of a weakly positive implicative
BCH-algebra with the help of its right and weak right self maps.

Theorem 4.3. A BCH-algebra X is weakly positive implicative if and only if Rz =
R′z ◦Rz for all z ∈X, where “◦” is composition of functions.

Proof. Let X be a BCH-algebra and Rz = R′z ◦Rz. Then Rz(y) = R′z ◦Rz(y) for
all y ∈ X. Thus y ∗ z = R′z(y ∗ z) = ((y ∗ z)∗ z)∗ (0∗ z) for all y,z ∈ X. Hence
X is a weakly positive implicative BCH-algebra. Conversely, if X is a weakly pos-
itive implicative BCH-algebra, then y ∗ z = ((y ∗ z)∗ z)∗ (0∗ z). Thus Rz(y) =
(Rz(y)∗z)∗ (0∗z) = R′z(Rz(y)) = R′z ◦Rz(y) for all y,z ∈ X. Hence Rz = R′z ◦Rz.
This completes the proof.

Theorem 4.4. Let X be a weakly positive implicative BCH-algebra. Then R′y =
R′y ◦R′y = (R′y)2.

Proof. SinceX is weakly positive implicative, thereforex∗y=((x∗y)∗y)∗(0∗y).
Thus

(
x∗y)∗(0∗y)= (((x∗y)∗y)∗(0∗y))∗(0∗y)

= (((x∗y)∗(0∗y))∗y)∗(0∗y). (4.1)

Hence

R′y(x)= R′y
((
x∗y)∗(0∗y))= R′y

(
R′y(x)

)= R′y ◦R′y(x)=
(
R′y
)2(x) (4.2)

for all x,y ∈X. This completes the proof.

The following example shows that the converse of the above theorem is not true.

Example 4.5. Let X = {0,a,b,c} in which ∗ is defined by:

∗ 0 a b c

0 0 0 b b

a a 0 b b

b b b 0 0

c c b a 0

Then X is a BCI-algebra. Further X is not weakly positive implicative because a =
c∗b ≠ ((c∗b)∗b)∗(0∗b)= (a∗b)∗(0∗b)= b∗b = 0. Moreover, easy calculations
give that

R′0 =
(
R′0
)2, R′a =

(
R′a
)2, R′b =

(
R′b
)2, R′c =

(
R′c
)2. (4.3)

This shows that the converse of Theorem 4.4 does not hold for the class of BCH-
algebras, because it does not hold for BCI-algebras.

We now pose another open problem.
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Open problem 2. What are the characterizations of weakly positive implicative
BCH-algebras and weakly implicative BCH-algebras in terms of their ideals.
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