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FINITE AMPLITUDE THERMAL CONVECTION
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Abstract. Finite amplitude thermal convection is studied in a horizontal layer of infinite
Prandtl number fluid with a variable gravity. For the present study, gravity is restricted to
vary quadratically with respect to the vertical variable. A perturbation technique based on a
small parameter, which is a measure of the ratio of the vertical to horizontal dimensions of
the convective cells, is employed to determine the finite amplitude steady solutions. These
solutions are represented in terms of convective modes whose amplitudes can be either
small or of order unity. Stability of these solutions is investigated with respect to three
dimensional disturbances. A variable gravity function introduces two non-dimensional
parameters. For certain range of values of these two parameters, double or triple cellular
structure in the vertical direction can be realized. Hexagonal patterns are preferred for
sufficiently small amplitude of convection, while square patterns can become dominant
for larger values of the convective amplitude. Variable gravity can also affect significantly
the wavelength of the cellular pattern and the onset condition of the convective motion.

2000 Mathematics Subject Classification. Primary 76Exx, 76Rxx, 80Axx.

1. Introduction and formulation. This paper studies the problem of finite ampli-
tude convection in a horizontal layer of infinite Prandtl number fluid of depth d and
bounded by two rigid plates subjected to a gravity function which varies quadratically
with respect to the vertical variable z. Such a problem is of particular interest both
in terms of fundamental knowledge and in terms of geological applications. Earth’s
mantle can be approximated as an infinite Prandtl number fluid because its viscos-
ity is extremely large. In addition, the gravity field may vary as a function of radius
only [4].

The present convection layer is assumed to be subjected to nearly insulating condi-
tions at the top and bottom boundaries of the fluid layer. Such assumption is mainly
for the mathematical convenience since, as was shown before [9], the governing sys-
tem for such convection layer can be generalized and solved easily for cases where the
coefficients of the terms in the governing equations vary with respect to the vertical
variable z.

The present investigation is an extension of the small-amplitude theory to the
finite—(but not necessarily small) amplitude regime, where the horizontal wave num-
bers αn (n= 1,2, . . .) that contribute to the horizontal planform functions satisfy the
relationship

αn = ηnγ1/2, γ ≡
(
β
D

)2/3
� 1, (1.1)

where dD is the dimensional thickness of either horizontal rigid plate boundary, β is
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the ratio of thermal conductivity λe of the boundary to thermal conductivity λ of the
fluid layer and the coefficients ηn are assumed to be of the order unity and indepen-
dent of γ. This finite amplitude theory was developed by Riahi [7] in the context of a
Marangoni convection problem and the reader is referred to this reference for details
of the theory.

We consider an infinite horizontal layer of fluid of depthd bounded above and below
by two infinite horizontal rigid plates of finite thickness dD and thermal conductivity
λe. In the steady static state, a constant heat flux transverses the system such that the
temperatures T0 and T0+∆T are attained at the upper and lower boundaries of the
fluid. It is assumed that the gravity function gG(z) varies quadratically with respect to
the vertical variable z. Here the expression for G(z) is normalized so that 〈G(z)〉 = 1,
where the angular bracket indicates an average over the fluid layer. We shall define
the Rayleigh number R based on the constant g which is the average of the gravity
function.

It is convenient to use non-dimensional variables in which length, velocity, time,
and temperature in the fluid flow are scaled respectively by d, K/d, d2/K, and qd/R,
where q =∆T/[d(1+2D/β)] is the negative temperature gradient in the fluid (in the
absence of fluid motion) and K is the thermal diffusivity of the fluid. Under the usual
Boussinesq approximation, the non-dimensional forms of the equations for momen-
tum, heat and conservation of mass can be simplified by using the representation

u= δv =∇×∇× ẑv, (1.2)

for the divergence-free velocity vector u. Here ẑ represents the unit vector in the
vertical direction and v is the poloidal function for the velocity vector. The toroidal
component∇×ẑψ ofu is not included in (1.2) since it can be shown that it is negligible
in the limit of infinite Prandtl number Pr for the present analysis. Using (1.2), the
vertical component of the double curl of themomentum equation in the limit of Pr =∞
and the heat equation yield the following equations

∆2
[∇4v−G(z)θ]= 0, (1.3a)

∇2θ−R∆2v = ∂θ
∂t
+δv ·∇θ, (1.3b)

∂θe
∂t

= µ∇2θe, (1.3c)

where θ and θe are the temperature fluctuations in the fluid layer and in the plates,
µ = Ke/K is the ratio of the thermal diffusivity of the plates to that of the fluid,
R = agqd4/Kν is the Rayleigh number, a is the coefficient of thermal expansion, ν is
the kinematic viscosity, t is the time variable, and ∆2 is the horizontal Laplacian. The
associated boundary conditions for (1.3) [3, 9] are

v = ∂v
∂z

= 0 at z =±1
2
, (1.4a)
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θ−θe = ∂
∂z
(
θ−βθe

)= 0 at z =±1
2
, (1.4b)

θe = 0 at z =±
(
1
2
+D

)
. (1.4c)

Riahi [9] determined the boundary conditions for θ by solving (1.3c), (1.4b), and
(1.4c), subjected to the restriction that the thickness D of each plate is small in com-
parison to the horizontal dimension of the convection cells. Assuming the same re-
striction here, the boundary conditions for θ are [9]

∂θ
∂z

=∓γ2θ at z =±1
2
. (1.5)

From previous studies [3, 8, 9] it is known that the predominant wave number in
the horizontal direction vanishes when γ tends to zero. For the investigation of this
limit we use γ as a perturbation parameter and anticipate that the relationship (1.1)
holds in the limit of small γ.

In the next section, we present the steady convection based on the system (1.3a),
(1.3b), (1.4a), and (1.5), where the gravity function is given by

G(z)=
(
1− G2

12

)
+G1z+G2z2. (1.6)

HereG1 andG2 are two constant parameters andG(z) is normalized so that 〈G(z)〉=1.
Figure 1.1 presents some graphs of G(z) versus z for cases where the extremum of
G(z) is a maximum, while Figure 1.2 presents some graphs of G(z) versus z for cases
where the extremum of G(z) is a minimum.

2. Steady convection. We start by introducing the horizontal planform function
w(x,y) that has the representation

w(x,y)=
m=∞,
n=Nm∑
m=1,
n=−Nm

εmAnmWnm, Wnm = exp
(
iknm ·r

)
, (2.1)

and the function wm(x,y) defined by

wm(x,y)=
n=Nm∑
n=−Nm

AnmWnm (2.2a)

which satisfies the relation

∆2wm+α2
mwm = 0,

〈
w2
m
〉= 1. (2.2b)

Here i is the imaginary number
√−1, r is the position vector (x,y), εm is the ampli-

tude of the mth mode and knm are the horizontal wave-number vectors for the mth
mode that satisfy the properties

Knm · ẑ= 0, |Knm| =αm, Knm =−K−nm. (2.3)
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Figure 1.1. The gravity function G(z) versus z for G2 < 0. Each curve is
labeled by a number given just below the curve. The curves 2, 3, and 4 are
for G2 = −14.5 and correspond, respectively, to G1 = −5/3, 0.0, and 12.0.
The curves 5, 6, and 1 are for G2 = −3.0 and correspond, respectively, to
G1 =−5/3, 0.0, and 12.0.

The coefficients Anm satisfy the conditions

n=Nm∑
n=−Nm

AnmA∗nm = 1, A∗nm =−Anm, (2.4)

where Nm denotes the number of horizontal wave-number vectors Knm participating
in themth mode and the asterisk indicates the complex conjugate. The representation
(2.1), (2.2), (2.3), and (2.4) given above are a generalization of representation in the
small amplitude case [3] to those in the finite—(but not necessarily small) amplitude
case.

The solutions of the steady state form of the governing system are obtained in
terms of a series in powers of γ

(v,θ,R)=
∑
n=0

γn
(
vn,θn,Rn

)
. (2.5)

To o(1), equations (1.3a) and (1.3b) and the boundary conditions (1.4a) and (1.5)
yield solutions of the form

(
v0,θ0

)= [H0(z),1
]
w(x,y), (2.6a)
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Figure 1.2. The gravity function G(z) versus z for G2 > 0. Each curve is
labeled by a number given just below the curve. The curves 2, 3, and 1 are
for G2 = 8.5 and correspond, respectively, to G1 =−5/3, 0.0, and 12.0. The
curves 4, 5, and 6 are for G2 = 20.0 and correspond, respectively, to G1 =
−5/3, 0.0, and 12.0.

where

H0(z)=
(
z2−(1/4))2[(G2/3

)
z2+G1z+

(
5−(1/4)G2

)]
5!

. (2.6b)

In deriving the solutions a normalization condition of the form

〈
θnθ0

〉= δno∑
m
ε2m (2.7)

has been assumed. This condition has been used to determine the solution θn. Here
δn0 ≡ 1 for n= 0 and zero otherwise.

The order γ system for (1.3a), (1.3b), (1.4a), and (1.5) yield solutions v1 and θ1.
Averaging the equation for θ1 over the fluid layer, we find

R0 = 15120
21−G2

. (2.8)

Here, R0 has the value of 720 in the limit of G2 → 0 in agreement with the constant
gravity result [3]. Multiplying the order γ2 equation for θ2 by Wnl, averaging over the
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fluid layer, and using order γ2 boundary conditions, we find the following result:

−2γεlA∗nl+
〈
Wnl∆2

[
θ1−

(
R1v0+R0v1

)]〉= 〈Wnl
(
δv0 ·∇θ1+δv1 ·∇θ0

)〉
. (2.9)

Using (2.6) and solutions v1 and θ1 in (2.9), we find that (2.9) is a system of nonlinear
algebraic equations for R1 and the coefficients Anl (n = −Nn,. . . ,−1,1, . . . ,Nn; l =
1, . . . ,∞) as functions of Nl, ηl, flow pattern, and amplitudes εl. This system generally
admits many different irregular and regular solutions [7]. As in the case of small
amplitude theory [3], we restrict our analysis to the regular cases where the flow
pattern is in the form of either rolls (Nl = 1), squares (Nl = 2), or hexagons (Nl = 3).
Hence we apply the usual algebra and procedure [9] for simplifying the system (2.4)
and (2.9). For dominant mode of convection with wave number αl [7], it leads to the
following results:

∣∣Anl∣∣2 = 1(
2Nl

) (
l= 1, . . . ; n= 1, . . . ,Nl

)
, (2.10a)

R1 = R0
(
2η−2l +Slη2

l
)
, (2.10b)

where

Sl = B0+B1εl
(
δ3Nl

)+B2ε2l , (2.10c)

B0 = 16.227−1.366G2−0.184G2
1+0.027G2

2(
21−G2

)2 , (2.10d)

B1 =−
√
6G1

(
0.173+0.016G2

)(
21−G2

) , (2.10e)

B2 =
{(
0.0334+0.0002G2

1+0.0002G2
2−0.0033G2

)+(1−δ1Nl
)

×
Nl∑
m=2

[(
0.0125+0.0001G2

1+0.0001G2
2−0.0013G2

)

+(0.0834+0.0002G2
1+0.0002G2

2−0.0080G2
)
φ2
m1

]}/(
15120Nl

)
,

(2.10f)

φmn =
(
Kml ·Knl

)
α2
l

, (2.10g)

and δ3Nl is a Kronecker delta so that it equals one for Nl = 3 and zero otherwise.
Minimizing the expression (2.10b) for R1 with respect to ηl yields

R1p = 2R0
(
2Sl
)1/2, ηp =

(
2
Sl

)1/4
, (2.11)

where ηp designates the preferred ηl at which R1 is minimized to R1p with respect to
the scaled wave number ηl. Using the approximate expression

R1 = R−R0

γ
(2.12)
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for R1 in (2.10b), we obtain the functional relationship between amplitude and wave
number for the dominant mode and for given R, G1 and G2. Using (2.12) in the ex-
pression for R1p given in (2.11), we obtain the expression for the preferred amplitude
ε as a function of R, G1, and G2.

It should be noted from (2.10c) that depending on the sign of εl, the expression for
Sl can either be given by the so-called subcritical form [7]

S−l = B0−
∣∣B1

∣∣∣∣εl∣∣δ3Nl+B2ε2l (2.13a)

or by the so-called supercritical form [7]

S+l = B0+
∣∣B1

∣∣∣∣εl∣∣δ3Nl+B2ε2l . (2.13b)

Here S−l < S
+
l unless Nl ≠ 3 or

∣∣B1
∣∣= 0. Hence R1p and ηp are given in terms of S−l .

The expressions for S−l and S+l are called subcritical and supercritical, respectively,
with reference to the expression B0+B2ε2l . Also, the flow due to the dominant mode
is called subcritical flow if Sl = S−l and supercritical flow if Sl = S+l [7].

For either subcritical or supercritical flow case, the corresponding flow pattern is
that due to hexagonal cells, and we can find the sign of the vertical motion, at any
plane z = z0,

∣∣z0∣∣ < 1/2, at the cells’ center r = 0 by the following procedure. We
have

u3 = u· ẑ 6 γ√
6
H0
(
z0
)
εlη2

l at r = 0, z = z0. (2.14)

Hence, u3 at z = z0 and r = 0 has the same sign as H0εl. Since the minimum state
(2.11) is due to the subcritical flow for Nl = 3, the subcritical hexagons are preferred
over the supercritical hexagons. If u3 given by (2.14) is negative, then the subcritical
hexagons are called down-hexagons, while for u3 > 0 such hexagons are called up-
hexagons.

Using the approximate expression

Hc =
〈
θu3

〉
6−〈θ0∆2v0

〉= γε2l η2
l (2.15)

for the heat transported by convection, the results (2.11) and (2.12) can be used to
determine the expression for Hc as function of R, γ, G1 and G2. For the case of
convection in the form of two-dimensional rolls, Nl = 1, we find

Hc = 4
∣∣R0

∣∣γ2∣∣(R−R0
)∣∣
[(
R−R0

)2
8R2

0γ2
−B0

](
1

B3/2+B4

)
, (2.16a)

where

B3 = 0.0417+0.0001G2
1+0.0001G2

2−0.0040G2

15120
, (2.16b)

B4 = 0.0125+0.0001G2
1+0.0001G2

2−0.0013G2

15120
. (2.16c)
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For the case of square pattern convection, Nl = 2, we find

Hc = 4
∣∣R0

∣∣γ2∣∣(R−R0
)∣∣
[(
R−R0

)2
8R2

0γ2
−B0

](
1

B3/4+B4

)
. (2.17)

Detailed computations indicate that B3 =
〈
H2

0

〉
, so that B3 > 0 as (2.16b) also indicates.

Hence, comparing (2.16a) and (2.17), we find that square cells transportmore heat than
rolls for all possible values of G1 and G2. For the case of hexagon pattern convection,
Nl = 3, we find the following result for the preferred subcritical hexagons:

Hc =
∣∣R0

∣∣γ2

B2
5

∣∣(R−R0
)∣∣


∣∣B1

∣∣+ B5∣∣B5
∣∣
√√√√B2

1+4B5

[(
R−R0

)2
8R2

0γ2
−B0

]


2

, B5 ≡ B3

2
+B4. (2.18)

Using (2.11) and (2.12), we obtain the following expression for the preferred wave-
length Lp = 2π/

(
ηp
√γ):

Lp = π
√|R−R0|
γ
√
|R0
∣∣ . (2.19)

3. Stability analysis. We now investigate the stability of the steady solutions that
were determined in the previous section. The equations for the time dependent dis-
turbances ṽ and θ̃ are given by

∆2
(∇4ṽ−Gθ̃)= 0, (3.1a)(∇2−σ)θ̃−R∆2θ̃ = δṽ ·∇θ+δv ·∇θ̃, (3.1b)

where the growth rate σ is defined by ∂/∂t = σ . The boundary conditions for ṽ and
θ̃ are the same as those for v and θ, respectively, so that

v = ∂v
∂z

=
(
∂
∂z
±γ2

)
θ̃ = 0 at z =±1

2
. (3.1c)

The system (3.1) is solved by using the following perturbation expansion:

(
ṽ, θ̃,σ

)= ∑
n=0

γn
(
ṽn, θ̃n,σn

)
. (3.2)

To o(1) equations (3.1a), (3.1b) and the boundary conditions (3.1c) are of the same
form as the corresponding ones for the steady finite amplitude case. The solutions are

ṽ0 =H0(z)w̃(x,y), θ̃0 = w̃(x,y), σ0 = 0, (3.3a)
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where

w̃(x,y)=
n=∞∑
n=−∞

Ãnw̃n, w̃n = exp
(
ik̃n ·r

)
. (3.3b)

Here, w̃(x,y) is the horizontal planform function of the general three-dimensional
disturbances, Ãn are constant coefficients, k̃n are the horizontal wave number vectors
of disturbances which satisfy the properties

k̃n · ẑ = 0,
∣∣k̃m∣∣= α̃n− η̃nγ1/2, k̃n =−k̃−n, (3.3c)

and the parameters η̃n are assumed to be at most of the order unity and independent
of γ.

The order γ system for the governing equations (3.1a), (3.1b) and boundary condi-
tions (3.1c) yields solutions ṽ1 and θ̃1. The solvability condition for the order γ system
then yields

σ1 = 0. (3.4)

Multiplying the order γ2 equation for θ̃2 by w̃n, averaging over the fluid layer, and
using order γ2 boundary conditions, we find the following result:

−γA∗n
(
2+σ2

)+〈w̃n∆2
[
θ̃1−

(
R1ṽ0+R0ṽ1

)]〉
= 〈w̃n

[
δṽ0 ·∇θ1+δv0 ·∇θ̃1+δṽ1 ·∇θ0+δv1 ·∇θ̃0

]〉
.

(3.5)

Using (2.6), (3.3), and the solutionv1,θ1, ṽ1, and θ̃1 in (3.5), we find that (3.5) is a system
of algebraic equations forσ2 and the coefficients Ãn. Here, the procedure to determine
the growth rates σ2 is similar to those used in [1] and [9]. Rather than repeating
that procedure for deriving the eigenvalues σ2 of (3.5), we refer the reader to these
references for further details. Following Riahi [9], we find that the only possible stable
solutions are those of subcritical hexagons and squares. Square pattern convection is
found to be stable for ∣∣εl∣∣≥ 12

∣∣B1
∣∣√

6B3
, (3.6a)

while subcritical hexagon pattern convection is found to be stable for

∣∣εl∣∣≥ 2
∣∣B1

∣∣∣∣(B3+2B4
)∣∣ . (3.6b)

In addition, present analysis is valid, provided

∣∣εl∣∣� γ−1 (3.7)

(see [3]).

4. Discussion of the results. Before discussing the results obtained in the last two
sections, it is of interest to discuss the structure of the quadratic form of the gravity
function G(z) given by (1.6). Due to such quadratic form of G(z), we assume that

G2 ≠ 0. (4.1a)
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The function G(z) has an extremum at

z =− G1

2G2
. (4.1b)

This extremum is a minimum for
G2 > 0 (4.1c)

and is a maximum for
G2 < 0. (4.1d)

The extremum of G(z) lies in the layer interval |z|< 1/2 for

−1<−G1

G2
< 1. (4.1e)

The function G(z) is symmetric with respect to its extremum value if

G1 = 0 (4.1f)

and asymmetric otherwise. See Figures 1.1 and 1.2 which agree with the above analyt-
ical features.

The z-dependence H0(z) of the leading order term for the vertical component u3 =
−∆2v0 of the velocity vector, given by (2.6b) indicate that it can vanish once or twice
within the layer interval |z|< 1/2, provided∣∣∣∣∣−

(
3G1

G2

)
+
[
9
(
G1

G2

)2

+
(
3− 60

G2

)]1/2∣∣∣∣∣< 1 (4.2a)

and/or ∣∣∣∣∣−
(
3G1

G2

)
−
[
9
(
G1

G2

)2

+
(
3− 60

G2

)]1/2∣∣∣∣∣< 1. (4.2b)

The fluid layer can then be composed of double or triple cell structures in the ver-
tical direction with different flow direction in each set of cells at given r values. For
example, double-layer structure can exist for G1 = 12 and G2 =−3. (Figure 1.1), while
triple-layer structure can exist for G1 =−5/3 and G2 = 20 (Figure 1.2).

The expression (2.8) for R0 indicates that the effect of G2 is destabilizing for G2 < 0
and stabilizing for G2 > 0, and R0 is independent of G1. The expressions (2.10b),
(2.10c), and (2.12) indicate the functional relationship between εl and ηl for given
R, γ, G1 and G2. Thus the dominant mode with certain amplitude allows particular
wavelength. Of particular interest is the preferred mode represented by (2.11) where
the expression for R1 is minimized with respect to the wavelength. Using (2.10c),
(2.11), and (2.12), we find that the amplitude

∣∣εp∣∣ for the preferred mode can increase
with R, for given γ, G1 and G2, provided[∣∣B1

∣∣δ3Nl+
(
R−R0

)/(
2γR0

)2]
B2

> 0. (4.3)

Furthermore, (2.10c) and (2.11) indicate that the preferred wavelength of the convec-
tion cells depend strongly on the gravity parametersG1 andG2. For example, for small
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∣∣εl∣∣ case, ηp is smaller than the corresponding value 3.006, which is realized in the
absence of variable G

(
G1 =G2 = 0

)
, provided

∣∣G1
∣∣ is sufficiently small and G2 lies in

the range
0<G2 < 18.312. (4.4)

However, if
∣∣G2

∣∣ is sufficiently small and
∣∣G1

∣∣ is sufficiently large, then ηp > 3.006.
It should be noted from (2.10c) and (2.11) that the present theory breaks down if Sl
becomes negative. Hence, the condition for the validity of the present results is that

B2
∣∣εl∣∣2−∣∣B1

∣∣∣∣εl∣∣δ3Nl+B0 > 0. (4.5)

The expression for R1p in (2.11) indicates that there is no finite amplitude instability
for R0 > 0, but there is such instability for R0 < 0. However, for the small amplitude
case, stable flow can be shown to be subcritically operative. Such subcritical behavior
is found to exist for hexagons if either

G1
(
2.076+0.192G2

)
< 0 for εl < 0 (4.6a)

or
G1
(
2.076+0.192G2

)
> 0 for εl > 0. (4.6b)

Similar subcritical behavior is exhibited by squares if

G2 > 25.3+6.24
(
1+0.18G2

1

)1/2. (4.6c)

Hence subcritical instability can exist only in a small range of R where amplitude of
motion is sufficiently small. For large amplitudes second order terms in εl in (2.10c)
dominates over lower order terms in εl resulting in a positive R1 given by (2.10b).

To discuss the direction of motion at the cells’ center in a sub-layer whereH0(z) has
only one sign, we restrict the discussion for the hexagonal cells only since it is known
[2] that a change of sign of motion at the cells’ center can lead to qualitatively different
cellular structures only in the case of hexagons. Thuswe consider the expression (2.14)
for u3 at z = z0(|z0|< (1/2)) and note that it satisfies the condition

u3H0(z)εl > 0. (4.7a)

We already found that stable subcritical hexagons are those for which the condition

B1εl < 0. (4.7b)

Given G1 and G2, B1 has a definite sign implying that εl has one sign opposite to that
of B1. Thus, it follows that H0(z) has a definite sign. Consequently, the sign of u3

can be found easily. For example, if z0 = 0, 0 < G2 < 20 and G1 > 0, then H0
(
z0
)
> 0,

B1 < 0 and εl > 0. Hence u3 > 0 and motion is upward at the hexagons’ center and at
the mid-plane z = 0. For z0 = 0 and 0 < G2 < 20 and G1 < 0, then H0

(
z0
)
> 0, B1 > 0

and εl < 0. Hence u3 < 0 and motion is downward at the hexagons’ center and at the
mid-plane z = 0. The results for the sign of motion appears to be independent of the
magnitudes of the amplitudes. For the case B1 = 0, the flow direction can be discussed
if Sl is modified by inclusion of the results to the order γ3 in the governing equations.
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The expressions (2.16), (2.17), and (2.18) for heat transported by convection, due to
rolls, squares and hexagons, provide dependence of the heat flux on R, γ, G1 and G2.
Since ηl and R1 change abruptly if the flow pattern changes, we expect that the heat
flux changes abruptly if the convection pattern changes due to a bifurcation. Also a
non-monotonicity of the heat flux with respect to G1 and G2 for a given R cannot be
ruled out.

The preferred wavelength Lp of the stable convection cells given by (2.19) indicate
that Lp increases with R for givenG2. It is independent ofG1 since R0 does not depend
on G1.

The stability conditions (3.6a), (3.6b) indicate that although small amplitude theory
may be adequate for small

∣∣G1
∣∣ where the right-hand sides of (3.6a) and (3.6b) can

become small compared to unity, it certainly is not adequate for large
∣∣G1

∣∣ which
require at least order one values for

∣∣εl∣∣.
It can be deduced from the expression (2.10f) for B2 that B2 > 0 for both stable

squares and subcritical hexagons. Using this result and the stability conditions (3.6a),
(3.6b) in the expression (2.10c) for Sl, we can compare ηp , given in (2.11), to the cor-
responding ηc , defined by

ηc =
(

2
B0

)1/4
, (4.8)

which is the critical η at which convection first occurs as R is increased. We find

ηp < ηc, (4.9)

and note that
∣∣ηp−ηc∣∣ increases with εl, and ηp is very close to ηc for small amplitude

case. These results are in agreement with the corresponding ones obtained by Proctor
[5] and Riahi [7] in the case of uniform gravity (G ≡ 1).

Small amplitude convection with variable properties and internal heating was in-
vestigated by Riahi [6] using small amplitude theory of Busse and Riahi [3]. Riahi finds,
in particular, that his general qualitative results depend on the symmetries and anti-
symmetries of the variable properties and internal heating functions with respect to
the mid-plane of the fluid layer. Results of the present investigation are in general
agreement with his results regarding unstable rolls and possible stable squares or
hexagons.
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