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Abstract. A well-known theorem of Jacobson (1964, page 217) asserts that a ring R with
the property that, for each x in R, there exists an integer n(x) > 1 such that xn(x) = x is
necessarily commutative. This theorem is generalized to the case of a weakly periodic ring
R with a “sufficient” number of potent extended commutators. A ring R is called weakly
periodic if every x in R can be written in the form x = a+b, where a is nilpotent and
b is “potent” in the sense that bn(b) = b for some integer n(b) > 1. It is shown that a
weakly periodic ring R in which certain extended commutators are potent must have a nil
commutator ideal and, moreover, the set N of nilpotents forms an ideal which, in fact,
coincides with the Jacobson radical of R.
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1. Introduction. A ring R is called periodic if for each x in R there exist distinct
positive integersm andn such that xm = xn. An element x is called potent if for some
integer n=n(x) > 1, xn = x. R is called weakly periodic if every x in R can be written
(not necessarily uniquely) as a sum of a nilpotent element and a potent element. It
is well known that a periodic ring is necessarily weakly periodic (see [2]). Whether a
weakly periodic ring is necessarily periodic is apparently not known. Moreover, by a
theorem of Chacron (see [3]), R is periodic if and only if for each x in R, there exists
a positive integer k = k(x) and a polynomial f(λ) = fx(λ) with integer coefficients
such that xk = xk+1f(x). For x,y in R, [x,y]1 = [x,y]= xy−yx denotes the usual
commutator, and for every positive integer k > 1, we define the extended commutator
[x,y]k inductively by [x,y]k = [[x,y]k−1,y].

2. Main results. We begin with some basic facts about weakly periodic rings.

Lemma 2.1. The homomorphic image of any weakly periodic ring is weakly periodic.

This follows readily from the definition of a weakly periodic ring.

Lemma 2.2. A weakly periodic division ring is necessarily commutative.

This follows from the “xn(x) = x” theorem of Jacobson (see [5]).

Lemma 2.3. Let R be a weakly periodic ring, N the set of nilpotents, and J the Jacob-
son radical of R. Then J ⊆N .
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Proof. Suppose j ∈ J. Then,

j = a+b, a∈N, bn = b for some n> 1. (2.1)

Suppose aq = 0. Then,
(j−b)(n−1)q+1 = a(n−1)q+1 = 0, (2.2)

which implies (since j ∈ J) b(n−1)q+1 ∈ J. But b(n−1)q+1 = b, since bn = b, and hence
b ∈ J. Since bn−1 is an idempotent element in J, bn−1 = 0. Therefore, b = bn = 0, and
hence by (2.1), j = a∈N . Thus, J ⊆N .

Theorem 2.4. Let R be a weakly periodic ring and suppose that N is the set of
nilpotents of R. Let n > 1 be a fixed integer. Suppose that for all x1, . . . ,xn in R\N , σ
is a permutation in Sn such that σ(n) �= n. Suppose, further, that for all x1, . . . ,xn in
R\N , there exists a positive integer k such that the following extended commutator is
potent, namely

[
x1 ···xn, xσ(1) ···xσ(n)

]
k is potent, ∀xi ∈ R\N. (2.3)

Then,
(i) The commutator ideal of R is nil, (C(R)⊆N).
(ii) N is an ideal of R.
(iii) N = J, the Jacobson radical of R.
(iv) R is periodic.

Proof. The semisimple ring R/J is isomorphic to a subdirect sum of primitive
rings Ri (i ∈ Γ). By Lemma 2.1, each Ri is a weakly periodic ring. Now, by Jacobson’s
density theorem, we must have

(a) Ri is a division ring, or
(b) for some positive integer m > 1, there exists a subring Ti of Ri which maps

homomorphically onto Dm, the complete matrix ring of m×m matrices over
some division ring D.

In case (a), Ri is commutative, by Lemma 2.2. In case (b), Dm must satisfy (2.3), since
(2.3) is inherited by all subrings and all homomorphic images of R, where m> 1. The
net result is:

(∗) The ring Dm of all m×m matrices over the division ring D satisfies (2.3), where
m> 1.

That statement (∗) is false can be seen by taking

x1 = x2 = ··· = xn−1 = E11, xn = E11+E12. (2.4)

In verifying this, note that

x1 ···xn = E11
(
E11+E12

)= E11+E12;

xσ(1) ···xσ(n) =
(
E11+E12

)
E11 = E11;

[
x1 ···xn,xσ(1) ···xσ(n)

]=−E12;
[
x1 ···xn,xσ(1) ···xσ(n)

]
k = (−1)kE12,

(2.5)

which is not potent. This contradiction shows that case (b) never occurs, and hence
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each Ri is a commutative division ring (case (a)). Thus, R/J is indeed commutative,
and hence

C(R)⊆ J, (C(R) denotes the commutator ideal of R). (2.6)

Combining this with Lemma 2.3, we see that C(R) ⊆ N , which proves (i). Part (ii) fol-
lows at once from part (i) by considering the commutative ring R/C(R). To prove (iii),
observe that N ⊆ J (since N is an ideal) while J ⊆N , by Lemma 2.3. Thus, N = J.

To prove part (iv), let x ∈ R. Then, by definition of weakly periodic ring, there exist
elements a and b such that

x = a+b, a∈N ; bγ = b, for some γ > 1. (2.7)

Hence, since N is an ideal (part (ii)) and a∈N ,

x−a= b = bγ = (x−a)γ = xγ+a0
(
a0 ∈N

)
. (2.8)

Therefore, x−xγ = a+a0 ∈ N , and thus (x−xγ)α = 0 for some positive integer α.
Hence, xα = xα+1f(x), f (λ)∈ Z[λ], and thus by Chacron’s theorem (see Section 1) R
is periodic. This proves the theorem.

In preparation for the proof of the next theorem, we first prove the following
lemmas.

Lemma 2.5. Let R be an arbitrary ring (not necessarily weakly periodic), and suppose
N is the set of nilpotents of R. Let n> 1 be a fixed integer. Suppose that for all x1, . . . ,xn

in R\N , σ is a permutation in Sn such that σ(1) �= 1 and σ(n) �= n. Suppose, further,
that for all x1, . . . ,xn in R\N , there exists a positive integer k such that

[
x1 ···xn,xσ(1) ···xσ(n)

]
k is potent, ∀xi ∈ R\N. (2.9)

Then, the set E of idempotents of R is central.

Proof. Suppose e∈ E, x ∈ R, a= ex−exe, f = e+a. We claim that ef = fe. Sup-
pose ef �= fe, then e �= 0, f �= 0, and (since e2 = e, f 2 = f ) hence e ∉N , f ∉N . There-
fore, by (2.9) with x1 = ··· = xn−1 = e, xn = f , we have [ef ,fe]k is potent, and hence
[f ,e]k = (−1)ka is potent. Since a2 = 0, it follows that a = 0. Hence, f = e+a= e,
which contradicts the hypothesis ef �= fe. This contradiction shows that ef = fe,
and hence e(e+a)= (e+a)e. Thus, a= ea= ae= 0. Hence, ex = exe. A similar argu-
ment, using a′ = xe−exe, f ′ = e+a′ shows that xe = exe, and hence ex = xe. This
proves the lemma.

Lemma 2.6. Suppose that R is a weakly periodic ring which satisfies the hypotheses
of Theorem 2.4. Suppose δ : R→ R∗ is a homomorphism of R onto R∗, and let N be the
set of nilpotents of R. Then, the set N∗ of nilpotents of R∗ coincides with the set δ(N).

Proof. By Theorem 2.4(iv), R is periodic. The lemma now follows from [1].

Lemma 2.7. Let R be a subdirectly irreducible ring. Then, the only central idempo-
tents of R are 0 and 1 (if 1∈ R).

This lemma is well known, and we omit the proof.
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Lemma 2.8. Let R be a ring, and let x,y ∈ R. Suppose that [x,y] commutes with x.
Then, for all positive integers k, we have

[
xk,y

]= kxk−1[x,y]. (2.10)

(Equivalently, [y,xk]= kxk−1[y,x].)

This follows at once, by induction.

Lemma 2.9. Let R be a periodic ring with the set N of nilpotents commutative. If for
each a ∈N and x ∈ R there exists a positive integer k such that [a,x]k = 0, then R is
commutative.

This lemma was proved by Bell [4].
We are now in a position to prove our next theorem.

Theorem 2.10. Let R be a weakly periodic ring, and let N denote the set of nilpo-
tents of R. Let n > 1 be a fixed integer. Suppose that for all x1, . . . ,xn in R\N , σ is a
permutation in Sn such that σ(1)=n and σ(n)= 1. Suppose that, for all x1, . . . ,xn in
R\N , there exists a positive integer k such that

[
x1 ···xn,xσ(1) ···xσ(n)

]
k is potent, ∀xi ∈ R\N. (2.11)

Suppose, further, that

[a,b] is potent ∀a,b ∈N. (2.12)

Then, R is commutative.

Proof. In view of Lemma 2.6, all the hypotheses are inherited by homomorphic
images of R; and since every ring is isomorphic to a subdirect sum of subdirectly
irreducible rings, we may assume that R is subdirectly irreducible. Since N is an ideal,
by Theorem 2.4(ii), we see that for all a,b in N , [a,b] is both potent (see (2.12)) and
nilpotent, and hence [a,b]= 0, which implies that N is commutative.

Now, R is periodic, by Theorem 2.4(iv), and hence some power of each element of R
is idempotent. Therefore, by Lemmas 2.5 and 2.7, either R is nil or R has an identity 1.
In the first case, R = N is commutative and there is nothing further to prove. So we
assume that 1∈ R.

Let a∈N and x ∈ R\N . Since 1+a �∈N , there exists a positive integer k such that

[(1+a)·1·1···1·x,x ·1·1···1·(1+a)]k is potent,

and thus [x+ax,x+xa]k is potent.
(2.13)

Next, we show, by induction, that

[x+ax,x+xa]m = [a,x]m+1 for all positive integers m. (2.14)

To begin with, observe that

[x+ax,x+xa]1 = [x,xa]+[ax,x]+[ax,xa]. (2.15)
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Since N is a commutative ideal of R and a ∈ N , therefore [ax,xa] = 0, and hence
(2.15) is equivalent to

[x+ax,x+xa]1 =−[xa,x]+[ax,x]= [a,x]2. (2.16)

Hence (2.14) is true for m= 1. Now, suppose (2.14) is true for m= q. That is, suppose
that

[x+ax,x+xa]q = [a,x]q+1. (2.17)

This induction hypothesis implies that

[x+ax,x+xa]q+1 =
[
[a,x]q+1,x+xa

]

= [[a,x]q+1,x
]+[[a,x]q+1,xa

]

= [[a,x]q+1,x
]= [a,x]q+2,

since [[a,x]q+1,xa]= 0 (recall that a∈N and N is a commutative ideal of R). Thus,
(2.14) is true for m= q+1, completing this induction proof of (2.14). Now, combining
(2.13) and (2.14), we see that

[a,x]k+1 is potent (a∈N, x ∈ R). (2.18)

Since [a,x]k+1 is also in the ideal N , therefore this extended commutator is both
nilpotent and potent, and hence

[a,x]k+1 = 0. (2.19)

Keeping in mind that R is periodic and N is commutative, and combining (2.19) with
Lemma 2.9, it follows that R is commutative, and the theorem is proved.

Corollary 2.11. Suppose R is a periodic ring with commuting nilpotents and with
the property that, for all x,y in R, there exists a positive integer k such that
[xy,yx]k = 0. Then, R is commutative.

Proof. Since R is periodic, R is also weakly periodic (see Section 1). Therefore, all
the hypotheses of Theorem 2.10 are satisfied (take n = 2 in (2.11)), and hence R is
commutative.

The following is another corollary which yields a result proved by Putcha and
Yaqub [6].

Corollary 2.12. A periodic ring with commuting nilpotents and central commuta-
tors is commutative.

Proof. Let x,y be any elements of R. Since [x,y] is in the center of R, therefore
[[x,y],y]= 0; that is, [x,y]2 = 0. Thus,

[x,y]2 = 0 ∀x,y ∈ R. (2.20)

In particular, [xy,yx]2 = 0, and the corollary now follows by taking k = 2 in
Corollary 2.11.
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