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Abstract. We define certain spaces of Banach-valuedmeasures called Lipschitzmeasures.
When the Banach space is a dual space X∗, these spaces can be identified with the duals
of the atomic vector-valued Hardy spaces Hp

X(R
n), 0<p < 1. We also prove that all these

measures have Lipschitz densities. This implies that for every real Banach space X and
0 < p < 1, the dual Hp

X(R
n)∗ can be identified with a space of Lipschitz functions with

values in X∗.

2000 Mathematics Subject Classification. Primary 42B30, 46E30.

1. Introduction and notation. An interesting question in the theory of vector-
valued Hardy spaces is the representation of their dual spaces. This matter has been
considered by several authors in the different versions (not necessarily equivalent) of
these spaces, namely the Hp-spaces of holomorphic functions in the disk with values
in a Banach space X as well as the “maximal” and the atomic Hardy spaces of Banach-
valued distributions in the unit circle (cf. [1, 2, 3, 4, 5]). In particular, in [1], it is proved
that for every Banach space X, the dual of the atomic space H1

at(X) in the unit circle
is the space ���(X∗) of measures in the circle and values in X∗ of bounded mean
oscillation. In that paper, it is proved that this space of measures is in fact the space
of functions of bounded mean oscillation if and only if X∗ has the Radon-Nikodym
property and in this case H1

at(X)∗ =���(X∗).
In this paper, we consider the atomic Hardy spaces Hp

X in Rn for 0 < p < 1. The
dual space of each of these Hp

X will be a space of measures with values in X∗ modulo
polynomials of degree N ≤ [n(1/p−1)] (measures with polynomial densities). These
measures will be finitely additive measures defined in the ring of all bounded Borel
sets in Rn and have a control imposed on cubes analogous to that one shared by the
Lipschitz functions: f ∈ L1

loc(Rn) is a Lipschitz function with exponent α > 0 if and
only if there exists a positive constant C > 0 such that

∥∥f −P[α]Q (f )
∥∥
L2(Q) ≤ C|Q|(α/n)+1/2, (1.1)

for every cubeQ, where P[α]Q (f ) is the unique polynomial of degree less than or equal
to [α] having the same moments of order less than or equal to [α] as f .

The exponent p ∈ (0,1)makes possible to adapt the arguments of the scalar theory
to approximate these measures by measures with smooth density. The final result is
that every measure belonging to our space of measures denoted by �α

X has a Radon-
Nikodým derivative that is a Lipschitz function with exponent α = n(1/p−1). Then
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the dual of Hp
X is the space of Lipschitz functions in Rn with values in X∗ modulo

polynomials of degree less than or equal to [α]. This holds for every real Banach
space X, contrasting with the case p = 1 mentioned above.

The following notation will be used throughout this paper, �(Rn,X) will denote the
space of rapidly decreasing functions on Rn with values in a real Banach space X. We
will denote by �′(Rn,X) the space of X-valued distributions in Rn, that is, the space
of all continuous linear operators from C∞c (Rn) into X and �′(Rn,X) will be the space
of all the linear and continuous operators from �(Rn) with values in X. �′s(Rn,X)
and �′b(Rn,X) will denote, respectively, �′(Rn,X) with the topologies of pointwise
convergence and uniform convergence in bounded subsets of �(Rn).

For a cube Q ⊂ Rn and 1 ≤ p <∞, LpX(Q) will denote the space of all the X-valued
Bochner measurable functions on Q such that ‖f‖ belongs to Lp(Q).

For 1≤ q <∞, VqX(Q) will be the space of all countably additive measures µ on the
Borel sets on the cube Q with values in X and with finite q-variation

‖µ‖VqX(Q) = sup

( ∑
A∈π

‖µ(A)‖q
m(A)q−1

)1/q

, (1.2)

where the supremum is taken over all finite partitions (measurable) π of Q and m
is the Lebesgue measure. For p > 1, the dual space of LpX(Q) can be identified with
VqX∗(Q), where 1/p+1/q = 1. For complete expositions of vector measures and vector
integration see [6, 7].

All the cubes considered here will be compact and will have sides parallel to the
axes.

∑
0 will be the ring of bounded Borel sets in Rn.

For f ∈�′(Rn,X) and ϕ ∈�(Rn), we define

M∗
ϕ(f)(x)= sup

|y−x|<t

∥∥ϕt∗f(y)
∥∥
X. (1.3)

∆hg(x) denote the difference g(x+h)−g(x), where g is an X-valued function and
∆2
hg = ∆h∆hg. For α > 0, the spaces ΛαX will be the vector-valued versions of the

spaces Λα of Lipschitz functions, namely, if α = [α]+α′, 0 < α′ < 1, then g ∈ ΛαX if
g ∈ C[α]X (Rn) and

‖g‖ΛαX = sup
|β|=[α]

sup
h∈Rn\0

|h|−α′∥∥∆hDβg
∥∥
L∞X <∞. (1.4)

For α∈ Z, g ∈ΛαX if g ∈ Cα−1X (Rn) and

‖g‖ΛαX = sup
|β|=α−1

sup
h∈Rn\0

|h|−1∥∥∆2
hD

βg
∥∥
L∞X . (1.5)

Notice that, as in the case of scalar functions, ‖g‖ΛαX = 0 implies thatDβg is constant

for all |β| = [α] if α ∉ Z, andDβg is an affine linear function for every |β| =α−1 when
α∈ Z. Using this fact and Taylor’s theorem for Banach-valued functions, we conclude
that g is a polynomial of degree less than or equal to [α].
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We define Λ̃αX to be the normed quotient space of ΛαX modulo polynomials of degree
less than or equal to [α].

As usual, the letter C denote a constant that could be different at each occurrence.

2. Interpolation polynomials and Lipschitz measures. The aim of this section is
to define an appropriate space of vector-valued measures, which turn out to be the
dual of a vector-valued Hardy space.

Let Q be a cube on Rn with center x0 and let f ∈ L1(Q). The linear independence
of the family of functions {xα}|α|≤N implies the existence of a unique polynomial PNQ
of degree less than or equal to N such that, for every multi-index α with |α| ≤N ,∫

Q

(
x−x0

)αf(x) dx|Q| =
∫
Q

(
x−x0

)αPNQ (x) dx|Q| . (2.1)

This polynomial PNQ can be constructed in the standard way using the dual basis of

the set {(x−x0)α : |α| ≤N} in L2(Q,dx/|Q|), that is, the set of polynomials {ψQ
α }|α|≤N

of degree less than or equal to N , such that∫
Q

(
x−x0

)αψQ
β (x)

dx
|Q| = δαβ, (2.2)

where δαβ is the Kronecker delta.
Then the interpolating polynomial is given by

PNQf(x)=
∑

|α|≤N
aαψ

Q
α (x), (2.3)

where

aα =
∫
Q
f(x)

(
x−x0

)α dx
|Q| . (2.4)

LetQ1 be the cube centered at zero and side length 1 and take any cubeQ with center
x0 and side length δ. If we let ψα =ψQ1

α for every |α| ≤N , then

ψQ
α(x)= δ−|α|ψα

(
x−x0

δ

)
. (2.5)

Then we conclude that there exists a constant C > 0 independent of Q and α, such
that ∣∣ψQ

α(x)
∣∣≤ C|Q|−|α|/n, x ∈Q. (2.6)

Theorem 2.1. Given a cube Q centered at x0, N ∈ N∪{0}, q ≥ 1 and f ∈ LqX(Q),
there exists a unique polynomial PNQf : Rn → X of degree less than or equal to N such
that ∫

Q
PNQf(x)

(
x−x0

)α dx
|Q| =

∫
Q
f(x)

(
x−x0

)α dx
|Q| (2.7)

for every multi-index α with |α| ≤N . This polynomial PNQf satisfies

∥∥PNQf(x)∥∥X ≤ C
|Q|1/q ‖f‖LqX(Q), x ∈Q. (2.8)

Thus ∥∥PNQf∥∥LqX(Q) ≤ C‖f‖LqX(Q). (2.9)
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Proof. Let aα =
∫
Qf(x)(x−x0)αdx/|Q| and PNQf(x)=

∑
|α|≤N aαψ

Q
α (x). Then if

β is a multi-index with |β| ≤N , then

∫
Q
PNQf(x)

(
x−x0

)β dx
|Q| = aβ =

∫
Q
f(x)

(
x−x0

)β dx
|Q| . (2.10)

To prove the uniqueness, suppose that
∫
QP(x)(x−x0)αdx/|Q| = 0 for every α with

|α| ≤N , where P is a polynomial of degree less than or equal to N . Then, for every
ξ∗ ∈X∗, ∫

Q
ξ∗ ◦P(x)(x−x0

)α dx
|Q| = 0 (2.11)

and since ξ∗ ◦P is a polynomial with scalar coefficients whose degree is less than or
equal to N , it follows that ξ∗ ◦P = 0 for every ξ∗ ∈ X, therefore P = 0. Finally, given
x ∈Q, ∥∥PNQf(x)∥∥X ≤ ∑

|α|≤N

∥∥aα∥∥X|Q|−|α|/n. (2.12)

From Hölder’s inequality, we have

∥∥aα∥∥X ≤ C|Q|(|α|/n)−1/q(∫
Q

∥∥f(x)∥∥qXdx)1/q
(2.13)

and this implies the desired estimates.

Let Q be any cube centered at x0 and µ ∈ VqX(Q). As in Theorem 2.1, we can con-
struct

PNQµ(x)=
∑

|α|≤N
aαψ

Q
α (x), (2.14)

where aα=1/|Q|∫Q(x−x0)αdµ.
As in Theorem 2.1 we can prove the following corollary.

Corollary 2.2. Let µ ∈ VqX(Q). Then PNQµ is the unique polynomial of degree less
than or equal to N satisfying

∫
Q
PNQf(x)

(
x−x0

)α dx
|Q| =

1
|Q|

∫
Q

(
x−x0

)αdµ, (2.15)

for every |α| ≤N . The polynomial PNQµ verifies

∥∥PNQµ(x)∥∥X ≤ C
|Q|1/q ‖µ‖VqX(Q), x ∈Q, ∥∥PNQµ∥∥LqX(Q) ≤ C‖µ‖VqX(Q). (2.16)

To abbreviate notation, we often write PQf or PQµ if the context does not cause
confusion. We introduce the following space of vector-valued measures.
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Definition 2.3. Let µ :
∑

0 → X be a vector measure, m the Lebesgue measure on∑
0, 0≤α<∞. We say that µ ∈�α

X , if the following conditions hold:
(i) µ ∈ V 2

X(Q), for every cube Q.
(ii) There exists a constant C such that, for every cube Q,

∥∥µ−P[α]Q (µ)m
∥∥
V2
X(Q)

≤ C|Q|(α/n)+1/2. (2.17)

For µ ∈�α
X , we define

‖µ‖�α
X
= inf

{
C : (ii) holds

}
. (2.18)

‖·‖�α
X
is a seminorm on �α

X and ‖µ‖�α
X
= 0 if and only if µ is a measure with poly-

nomial density P such that degP ≤ [α]. If we form the quotient space of �α
X modulo

polynomials of degree less than or equal to [α] (measures with polynomial density)
we obtain a normed space �̃α

X .
As in the scalar case, we have

‖µ‖�α
X
∼ sup

Q
|Q|−α/n inf

degP≤[α]
1

|Q|1/2
∥∥µ−Pm∥∥

V2
X(Q)

. (2.19)

From now on, we refer to this space as the space of Lipschitz measures �α
X .

Every function g ∈ ΛαX defines a measure in �α
X , in fact, as in [9, Lemma 5.18,

Chapter III], given x0 ∈ Rn and r > 0, there exists a polynomial P(x) of degree [α]
such that ∥∥g(x)−P(x)∥∥X ≤ Crα‖g‖ΛαX (2.20)

for every x in the cube centered in x0 and side length r , where C only depends on α
and n. This implies that

‖g‖�α
X
≤ C‖g‖ΛαX , (2.21)

where ‖g‖�α
X
denotes the norm of the measure with density g. In Section 3, we prove

that every µ ∈�α
X has a density g ∈ΛαX . Now, we can prove a weak version of this fact.

Lemma 2.4. Let α > 0 and g ∈ CmX (Rn), where m = [α] if α is not an integer and
m = α−1 otherwise. If the measure with density g belongs to �α

X , then g ∈ ΛαX and
‖g‖ΛαX ≤ C‖g‖�α

X
.

Proof. For every ξ∗ ∈ X∗ and every cube Q, we have that P[α]Q (ξ∗ ◦ g) =
ξ∗ ◦P[α]Q (g). Then it is easy to see that ξ∗ ◦g ∈ �α

R and ‖ξ∗ ◦g‖�α
R
≤ ‖ξ∗‖X∗‖g‖�α

X
.

By the scalar theory we have that ξ∗ ◦g ∈Λα and

∥∥ξ∗ ◦g∥∥Λα ≤ C∥∥ξ∗ ◦g∥∥�α
R
≤ C∥∥ξ∗∥∥X∗‖g‖�α

X
. (2.22)

The lemma follows from this inequality.
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3. Vector-valued Hardy spaces. We start with the classical definition of a vector-
valued atom.

Definition 3.1. Let 0 < p ≤ 1. A function a ∈ L1
X(Rn) is called an (X,p)-atom, or

simply an atom in X, if the following conditions hold:
(1) suppa⊂Q, where Q is a cube on Rn.
(2) (

1
|Q|

∫
Q

∥∥a(x)∥∥2Xdx)1/2
≤ |Q|−1/p. (3.1)

(3) For every multi-index α, with |α| ≤n(1/p−1),

∫
Rn
xαa(x)dx = 0. (3.2)

Definition 3.2. A (p,∞)-atom in X, is a function a satisfying (1), (3) above, and

‖a‖L∞X ≤ |Q|−1/p. (3.3)

Definition 3.3. Given 0 < p ≤ 1 as above, Hp
X is the space of vector-valued dis-

tributions f ∈ �′s(Rn,X) such that f =∑∞
i=1λiai, where ai is an atom in X for every

i∈N and
∑∞
i=1 |λi|p <∞.

We define

‖f‖HpX = inf

( ∞∑
i=1

∣∣λi∣∣p
)1/p

. (3.4)

As usual

d
(
f ,g

)= ∥∥f −g∥∥pHpX (3.5)

defines an invariant metric in Hp
X .

Remark 3.4. (1) Let ϕ ∈�(Rn). If a is an atom in X, then

∫
Rn

(
M∗
ϕ(a)(x)

)pdx ≤ Cϕ, (3.6)

where C does not depend on a.
(2) There exists a continuous seminorm ρ in �(Rn) such that

∥∥∥∥∫
Rn
aϕ(x)dx

∥∥∥∥≤ ρ(ϕ) (3.7)

for every atom a in X and ϕ ∈�(Rn).
(3) If ai is an (X,p)-atom and

∑∞
i=1 |λi|p <∞, then

∑∞
i=1λiai converges in �′b(Rn,X),

hence, the series always defines an element ofHp
X and the convergence is in this space.

(4) Hp
X is a complete metric space.
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The proof of (1) for ϕ ≥ 0 radial and decreasing is the same as in [9, Theorem 4.3,
page 275]. The general case follows from the fact that all the gauges ‖M∗

ϕ(f)‖p are
equivalent for ϕ ∈ �(Rn), with

∫
Rn ϕ(x)dx �= 0. This fact is proved as in the scalar

case (cf. [8]).
To prove (2), let ϕ ∈�(Rn) and an atom a in X. Then∥∥∥∥∫

Rn
a(x)ϕ(x)dx

∥∥∥∥= ∥∥a∗ϕ̌(0)∥∥≤M∗
ϕ̌(a)(y) (3.8)

for every |y| ≤ 1, where ϕ̌(x)=ϕ(−x). Raising the inequality above to the pth power
and integrating over the unit ball, we obtain∥∥∥∥∫

Rn
a(x)ϕ(x)dx

∥∥∥∥≤ Cϕ. (3.9)

The Banach-Steinhaus theorem implies that the set of atoms defines an equicontin-
uous family in �′(Rn,X), which implies (2).

Statement (3) follows directly from (2).
That Hp

X is complete follows from (3) taking a subsequence of a Cauchy sequence
{fn}∞n=1 in Hp

X satisfying ∥∥fnk+1−fnk∥∥pHpX < 1
2k
. (3.10)

If we denote by Hp
max(X) the space of elements f ∈ �′(Rn,X) such that M∗

ϕ(f) ∈
Lp(Rn), 0<p ≤ 1, then (1) in Remark 3.4 implies that we have a continuous inclusion
Hp
X

� � �� Hp
max(X). As in the scalar case, the space Hp

max(X) does not depends on the
gauge ‖M∗

ϕ(f)‖p , where ϕ ∈ �(Rn), with
∫
Rn ϕ(x)dx �= 0. Moreover, we can use the

grand maximal function to define it. Latter’s proof of the atomic decomposition of the
scalar Hardy spaces can be adapted to prove that, every atom a in X can be decom-
posed as a series a =∑∞

i=1λiai, where ai is a (p,∞)-atom in X, with
∑∞
i=1 |λi|p < C ,

where C is independent of a.

4. Duality. In this section, we state the duality between the vector-valued Hardy
spaces and the space of Lipschitz vector measures with values in X∗. Then we prove
that all these measures have densities that are Lipschitz continuous functions, hence
we have the representation of the space (Hp

X)∗ that holds in the scalar case without
any restriction on the Banach space X. Henceforth, we denote

α=n
(
1
p
−1

)
, N =

[
n
(
1
p
−1

)]
. (4.1)

The first step is to prove that the elements of the dual (Hp
X)∗ can be represented by

measures µ ∈�α
X∗ acting on atoms in X by∫

Rn
a(x)dµ. (4.2)

Proposition 4.1. Let 0 < p ≤ 1. For every Φ ∈ (Hp
X)∗, there exists a measure µ ∈

�α
X∗ unique modulo polynomials of degree less than or equal to N (measures with

polynomial density), such that (4.2) holds for every atom in X.
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Proof. Denote by L2
N(Q,X) the space of functions f ∈ L2

X(Rn), supported in Q
and with vanishing moments up to order N, and let

ΘN(X)=
⋃
Q
L2
N(Q,X). (4.3)

If f ∈ L2
N(Q,X), the function a(x)= |Q|1/2−1/p‖f‖−1L2X f (x) is an atom in X, then

∣∣Φ(f )∣∣≤ ‖Φ‖‖f‖L2X |Q|1/p−1/2. (4.4)

We can extend this functional to the whole space L2
X(Q) without increasing the

norm, and obtain a measure µQ ∈ V 2
X∗(Q), with ‖µQ‖V2

X∗ (Q)
≤ ‖Φ‖|Q|1/p−1/2 such that

Φ(f )=
∫
Q
fdµQ (4.5)

for every f ∈ L2
N(Q,X).

We show that µQ is uniquely determined up to addition of a measure with polyno-
mial density with values in X∗.

Indeed, since f ∈ L2
N(Q,X) has vanishing moments up to order N , then for every

polynomial P of degree less than or equal to N , µQ+P ·m also satisfies (4.5). Con-
versely, suppose that µ1 and µ2 belong to V 2

X∗(Q) and satisfy (4.5). Let f ∈ L2
X(Q), ν =

µ1−µ2 and consider the interpolation polynomials PQf and PQν of degree N . Then
f −PQf ∈ L2

N(Q,X) and

0=
∫
Q

(
f −PQf

)
dν =

∫
Q

(
f −PQf

)(
dν−PQν(x)dx

)= ∫
Q
f
(
dν−PQν(x)dx

)
(4.6)

for every f ∈ L2
X(Q), therefore dν = PQν(x)dx.

We conclude in particular that there exists a uniquemeasure νQ ∈ V 2
X∗(Q) satisfying

(4.5) with vanishing moments of order less than or equal to N . This measure is

νQ = µQ−
(
PQµQ

)
m. (4.7)

By Corollary 2.2, we have the estimate∥∥νQ∥∥V2
X∗ (Q)

≤ C‖Φ‖|Q|1/p−1/2. (4.8)

Now, we decompose Rn = ∪∞j=1Qj , where (Qj) is an increasing sequence of cubes.
We can adjust the measures µQj adding measures with polynomial density of degree
less than or equal to N to obtain a single measure µ with values on X∗ and defined
on

∑
0, such that

Φ(f )=
∫
Rn
fdµ (4.9)

for every f ∈ ΘN(X). Since the restriction to every cube Q of µ−(PQµ)m is νQ, then
by (4.8) we conclude that µ ∈�α

X∗ and

‖µ‖�α
X∗ ≤ C‖Φ‖. (4.10)
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Since ΘN(X) is dense in Hp
X , we have shown that

(
Hp
X
)∗ � � �� �̃α

X∗ . (4.11)

Now, let 0 < p < 1 and µ ∈ �α
X∗ . We prove that the natural action of µ in ΘN(X)

given by

Φ(f )=
∫
Rn
fdµ (4.12)

can be extended to Hp
X as a continuous functional.

Since ∣∣∣∣∫
Q
a(x)dµ(x)

∣∣∣∣= ∣∣∣∣∫
Q
a(x)d

(
µ−PQ(µ)m

)∣∣∣∣
≤ ‖a‖L2X

∥∥µ−PQ(µ)m∥∥
V2
X∗ (Q)

≤ ‖µ‖�α
X∗ ,

(4.13)

the proof of the continuity of Φ would be complete if we could prove that

Φ(f )=
∑
λjΦ

(
aj
)
, (4.14)

for every f = ∑
λjaj ∈ ΘN(X) with atomic representation f = ∑

λjaj . The identity
(4.14) holds if µ has a smooth density, as the following lemma shows.

Lemma 4.2. Let ψ ∈ �(Rn,X∗) and f ∈ ΘN(X) with atomic representation f =∑
λjaj . Then ∫

Rn

〈
f ,ψ

〉
dx =

∑
λj
∫
Rn

〈
aj,ψ

〉
dx. (4.15)

(here 〈 ,〉 denotes the duality in X).

Proof. Every atom a in X defines a continuous functional on �(Rn,X∗)

Ta(ψ)=
∫
Rn

〈
a,ψ

〉
dx. (4.16)

Let ρ be the continuous seminorm in �(Rn) of Remark 3.4(2). Then for anyψ=∑ϕi⊗
ξ∗i ∈�(Rn)⊗X∗, we have

∣∣Ta(ψ)∣∣≤∑ρ
(
ϕi
)∥∥ξ∗i ∥∥X∗ . (4.17)

Hence, ∣∣Ta(ψ)∣∣≤ ρ̃(ψ), (4.18)

where ρ̃ is the continuous seminorm ρ⊗‖·‖ in the projective tensor product �(Rn)⊗π
X∗. It follows that the family {Ta : a is an atom in X} is equicontinuous in
(�(Rn)⊗̂πX∗)′ =�(Rn,X∗)′ (see [12, Chapter 51]). We conclude that the series

∑
λjTaj

converges in the strong topology of the dual space �(Rn,X∗)′ to a continuous func-
tional. Since (4.15) holds forψ in the dense subset �(Rn)⊗X∗ of �(Rn,X∗), the proof
of the lemma is now complete.

Now we are in position to prove the continuous inclusion �α
X ⊂ΛαX.
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Proposition 4.3. Every µ ∈ �α
X has a density g ∈ ΛαX(Rn) such that ‖g‖ΛαX ≤

C‖µ‖�α
X
.

Proof. Let ϕ ∈ C∞c radial, ϕ ≥ 0, with supp ϕ in the unit ball and such that∫
Rn ϕ = 1. Consider the family of measures (µt)t>0 with density ϕt ∗ µ(x) =
µ(ϕt(x−·)), whereϕt(x)= (1/tn)ϕ(x/t). Notice that µt is a C∞ function with values
in X. In fact, for every ξ∗ ∈ X∗, the measure ξ∗ ◦µ has a Radon-Nikodym derivative
in L1

loc. Then ξ∗ ◦µt = (ξ∗ ◦µ)t is a smooth function, and this implies that µt is also
smooth (see [11]).

By Lemma 2.4 we have∥∥ξ∗ ◦µt∥∥Λα = ∥∥(ξ∗ ◦µ)t∥∥Λα ≤ C∥∥(ξ∗ ◦µ)t∥∥�α
R
, (4.19)

and [9, proof of Theorem 5.22, Chapter III]∥∥(ξ∗ ◦µ)t∥∥�α
R
≤ C∥∥ξ∗ ◦µ∥∥�α

R
. (4.20)

But we have ∥∥ξ∗ ◦µ∥∥�α
R
≤ ∥∥ξ∗∥∥X∗∥∥µ∥∥�α

X
(4.21)

and thus, we conclude that ∥∥µt∥∥ΛαX ≤ C‖µ‖�α
X
. (4.22)

We know that µtconverges to µ in �′(Rn,X) as t→ 0. Then the proof of the propo-
sition will be complete once we prove that Dβµt converges uniformly on compact sets
of Rn for |β| ≤ [α]. To this end, recall that if k is a nonnegative integer and β is a
multi-index such that k+|β|>α. Then

∂k

∂tk
Dβ
x
(
ϕt(x)

)= Ctα−k−|β|at(x), x ∈Rn, t > 0, (4.23)

where at(x) is a scalar (p,∞)-atom for every t, and C is a constant depending on ϕ,
α, n, and the order of differentiation, but not on t (see [9, Lemma 5.20, Chapter III]).

Then ∥∥∥∥ ∂k∂tk Dβ
xµt(x,t)

∥∥∥∥
X
=
∥∥∥∥∫

Rn

∂k

∂tk
Dβ
y
(
ϕt(x−y)

)
dµ(y)

∥∥∥∥
X

= Ctα−k−|β|
∥∥∥∥∫

Rn
at(x−y)dµ(y)

∥∥∥∥
X
.

(4.24)

Proceeding as in (4.13), we see that∥∥∥∥∫
Rn
at(x−y)dµ(y)

∥∥∥∥
X
≤ ‖µ‖�α

X
. (4.25)

Therefore, for any integer k≥ 0 and any multi-index β such that k+|β|>α,∥∥∥∥ ∂k∂tk Dβ
xµt(x)

∥∥∥∥
X
≤ Ctα−k−|β|‖µ‖�α

X
, (4.26)

where C does not depend on t and µ.
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With this inequality and the fundamental theorem of calculus it is easy to prove
that Dβ

xµt satisfies a uniform Cauchy estimate on compact sets on Rn as t tends to
zero. The proof is complete.

Now, we are ready to prove that∫
Rn
fdµ =

∑
λj
∫
ajdµ (4.27)

for every f ∈ΘN(X) with atomic representation f =∑λjaj and every µ ∈�α
X∗ .

Let g ∈ ΛαX∗ be the density of µ. Let hm(x) = g(x)ψ(x/m), where ψ is a radial
and C∞ scalar function supported in the unit ball such that ψ(x) = 1 for |x| ≤ 1/2
and 0 ≤ ψ(x) ≤ 1 for all x. The family {hm}m∈N is a sequence of functions in ΛαX∗
with norm bounded by C‖g‖ΛαX∗ . This cut-off process combined with the regulariza-
tion described in the proof of Proposition 4.3 implies that there exists a sequence of
functions (gm)∞m=1in C

∞
X∗ with compact support such that

(1) ‖gm‖ΛαX∗ ≤ C‖g‖ΛαX∗ for everym∈N, where C is an absolute constant,

(2)
∫ 〈f ,gm〉dx→ ∫ 〈f ,g〉dx asm→∞ for every f ∈ΘN(X).

Lemma 4.2 and the bounded convergence theorem imply (4.14). Thus, we have
proved the following theorem.

Theorem 4.4. Let X be a Banach space over R. For 0<p < 1 and α=n(1/p−1),(
Hp
X
)∗ = Λ̃αX∗ (4.28)

with equivalent norms.
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