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ON CERTAIN CLASSES OF GALOIS EXTENSIONS OF RINGS
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Abstract. Relations between the following classes of Galois extensions are given: (1) cen-
trally projective Galois extensions (CP-Galois extensions), (2) faithfully Galois extensions,
and (3) H-separable Galois extensions. Moreover, it is shown that the intersection of the
class of CP-Galois extensions and the class of faithfully Galois extensions is the class of
Azumaya Galois extensions.
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1. Introduction. The following classes of Galois extensions of noncommutative
rings have been investigated:

(1) central Galois extensions and Galois algebras,
(2) the center of a ring which is Galois with the Galois group induced by and

isomorphic to the Galois group of the ring (see [4, 6, 9]),
(3) H-separable Galois extensions (see [9]).

Recently, a class broader than classes (1) and (2) has been studied in [1, 2], that is,
the class of the Azumaya Galois extensions, where S is called an Azumaya G-Galois
extension if it is a G-Galois extension of SG which is an Azumaya CG-algebra, where
C is the center of S and G is a finite automorphism group of S. Moreover, properties
of a Galois skew group ring of G over S and S ∗G were studied in [10]. Now, we
continue the above investigation into the different types of Galois extensions of rings
and also further study the properties of S∗G. We define another two classes of Galois
extensions containing all the Azumaya Galois extensions:

(i) centrally projective Galois extension S, that is, S is G-Galois extension and cen-
trally projective over SG (S is a direct summand of a finite direct sum of SG as
a SG-bimodule),

(ii) faithfully Galois extension S, that is, S is faithful as a left S ∗G-module and
S∗G is an Azumaya Z-algebra, where S∗G is the skew group ring of G over S
with center Z .

The purpose of the present paper is to show some relations between the above two
classes (i) and (ii) and the H-separable Galois extensions as studied in [9]. Moreover,
we show that the intersection of the class of CP-Galois extensions and the class of
faithfully Galois extensions is the class of Azumaya Galois extensions.

2. Preliminaries. Throughout, we keep all notations and facts as given in [10]. Let
S be a ring with 1, G a finite automorphism group of S of order n for some integer n
invertible in S, SG the subring of the elements fixed under each element in G, S∗G
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a skew group ring of G over S, Z the center of S∗G, and G′ the inner automorphism
group of S∗G induced by the elements in G.
Following [3, 4, 9, 11], we call S a G-Galois extension of SG if there exist elements

{ci,di in S, i = 1,2, . . . ,k for some integer k} such that
∑
cig(di) = δ1,g for each g ∈

G. The set {ci,di} is called a G-Galois system for S. Let B be a subring of a ring
A with 1. We denote by VA(B) the commutator subring of B in A, and by A◦ the
opposite ring of A. We call A a separable extension of B if there exist {ai,bi in A, i=
1,2, . . . ,m for some integer m} such that

∑
aibi = 1, and

∑
sai⊗bi =

∑
ai⊗bis for

all s in A, where ⊗ is over B, and {ai,bi} is called a separable system for A over B.
An Azumaya algebra is a separable extension of its center. A ring A is called an H-
separable extension of B if A⊗BA is isomorphic to a direct summand of a finite direct
sum ofA as anA-bimodule (i.e.,A⊗BA is a centrally projectivemodule overA). A ring S
is called an Azumaya G-Galois extension of SG if it is a G-Galois extension of SG which
is a CG-Azumaya algebra, where C is the center of S. S is called a centrally projective
Galois extension (CP-Galois extension) if S is G-Galois and centrally projective over
SG (i.e., S is a direct summand of a finite direct sum of SG as an SG-bimodule). We call
S a faithfully Galois extension if S is faithful as a left S∗G-module and S∗G is an
Azumaya Z-algebra, and S is anH-separableG-Galois extension of SG if it is aG-Galois
and anH-separable extension of SG. We employ several important facts about a Galois
extension, an H-separable extension, and an Azumaya algebra. For convenience, we
list them in the following.
(1) If S is an H-separable and G-Galois extension of SG, then

(i) VS(VS(SG))= SG,
(ii) VS(SG) is C-finitely generated projective of rank n, where n= |G|,
(iii) n−1 ∈ SG if and only if VS(SG) is a separable C-algebra [9, Proposition 4].

(2) If S is an H-separable extension of SG, then HomSG(S,S) � S⊗C (VS(SG))◦ (see
[9, second paragraph of Section 3, page 124]).
(3) If S is centrally projective over SG, then HomSG(S,S) is anH-separable extension

of S [8, Proposition 11].
(4) In case S is a progenerator over SG, HomSG(S,S) is an H-separable extension of

S if and only if S is centrally projective over SG [8, Proposition 11].
(5) Let S be an H-separable extension of SG. Then,

(i) HomSG(S,S) is a separable extension of S if and only if VS(SG) is separable
over C ,

(ii) HomSG(S,S) is an H-separable extension of S if and only if VS(SG) is an
Azumaya C-algebra [8, Proposition 12].

(6) Let S be a G-Galois extension of SG. If all the elements of G are inner-auto-
morphisms of S, then S is an H-separable extension of SG [9, Corollary 3].
(7) Let A be H-separable over B and M a left A-module. Then M is a generator over

A if M is a generator over B [5, lemma, page 17].
(8) S is a G-Galois extension of SG if and only if S ∗G � HomSG(S,S) and S is a

finitely generated and projective right SG-module [4, Theorem 1].
(9) Let S be a finitely generated and projective right SG-module. Then HomSG(S,S) is

centrally projective over S if and only if S is an H-separable extension of SG

[8, Corollary 3, page 202].
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(10) If S is centrally projective over SG, then HomSG(S,S) is an H-separable exten-
sion of SG [8, Theorem 6].
(11) LetA be a projectiveH-separable extension of B. ThenA is an Azumaya algebra

if B is an Azumaya algebra [7, Theorem 1].
(12) Let A be an Azumaya algebra over R. Suppose that B is a separable subalgebra

of A. Set C = VA(B). Then C is a separable subalgebra of A and VA(C) = B. If B is
also central, so is C and the R-algebra map B ⊗C → A, given by b⊗ c → bc, is an
isomorphism [3, Theorem 4.3, page 57].

3. H-separable Galois extensions. In [9], the class of H-separable G-Galois exten-
sion was investigated. In this section, we characterize an H-separable and a CP-Galois
extension, and an H-separable and a faithfully Galois extension. Consequently, the
expressions of S∗G are derived.

Theorem 3.1. Let S be an H-separable Galois extension of SG. Then, the center of
VS(SG) is C if and only if S is a CP-Galois extension of SG.

Proof. Since S is anH-separable andGalois extension of SG, S∗G �HomSG(S,S)�
S⊗C (VS(SG))◦ such that VS(SG) is a separable C-algebra (see [9, second paragraph of
Section 3 and Proposition 4]). Also, by hypothesis, the center of VS(SG) is C , so it is
an Azumaya C-algebra. Hence, S∗G(�HomSG(S,S)) is an H-separable extension of S
[8, Proposition 12]. Noting that n is a unit in S and that S∗G � HomSG(S,S), we get
that S is a progenerator over SG; and so S is centrally projective over SG [8, Proposi-
tion 11]. Thus, S is a CP-Galois extension of SG.
Conversely, since S is centrally projective over SG, HomSG(S,S) is an H-separable

extension of S [8, Proposition 11]. Therefore, VS(SG) is an Azumaya C-algebra
[8, Proposition 12].

Theorem 3.2. If S is a G-Galois extension, then
(1) S∗G is an H-separable G′-Galois extension,
(2) S∗G is not a CP-Galois extension of (S∗G)G′ with Galois group G′.

Proof. (1) Since S is G-Galois extension, S ∗G is a G′-Galois extension with the
same Galois system as S (for G′ restricted to S is G). But G′ is inner, so S∗G is an
H-separable extension of (S∗G)G′ [9, Corollary 3].
(2) Assume that S∗G is a CP-Galois extension over (S∗G)G′ . Then the center of

VS∗G((S∗G)G′) is Z by Theorem 3.1. Clearly,
∑
gi is in the center of VS∗G((S∗G)G′),

but not in Z . This is a contradiction. Thus, S ∗G is not a CP-Galois extension of
(S∗G)G′ .
We note that Theorem 3.2 provides an example of an H-separable Galois extension,

but not of a CP-Galois extension.
Next, we characterize an H-separable and CP-Galois extension S, and then derive

an expression of the skew group ring S∗G of G over S.

Theorem 3.3. S is an H-separable and CP-Galois extension of SG with Galois group
G if and only if S ∗G � S ⊗C (VS(SG))◦ such that VS(SG) is an Azumaya C-algebra,
where (VS(SG))◦ is the opposite ring of VS(SG).
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Proof. (⇒) Since S is an H-separable and G-Galois extension of SG, S ∗ G �
HomSG(S,S) � S ⊗C (VS(SG))◦, where S is a finitely generated and projective mod-
ule over SG. Moreover, n is a unit in S, so S is a progenerator over SG. Therefore,
HomSG(S,S) is an H-separable extension of S because S is centrally projective over
SG by hypothesis [8, Proposition 11]. But then VS(SG) is an Azumaya C-algebra [8,
Proposition 12].
(⇐) Since S∗G � S⊗C (VS(SG))◦ such that VS(SG) is an Azumaya C-algebra, VS(SG)

is H-separable over C ; and so S ∗G is H-separable over S. Now, S is a generator
over S, so S is a generator over S ∗G [5, lemma, page 17], where S is considered
as a left S ∗G-module by (tg)(s) = t(g(s)) for all t,s ∈ S and g ∈ G. On the other
hand, n is a unit in S, so S∗G is a separable extension of S with a separable system
{(1/n)gi, g−1i | i = 1,2, . . . ,n}. Then S can be shown to be a finitely generated and
projective left S ∗G-module by using the above separable system since S is a free
module over itself (see [3, proof of Proposition 2.3]). But then S is a progenerator
over S∗G. Noting that SG � HomS∗G(S,S), we see that S∗G � HomSG(S,S) and S is
a finitely generated and projective right SG-module by Morita theorem. This implies
that S is aG-Galois extension of SG [4, Theorem 1]. Again, since S∗G is anH-separable
extension of S, HomSG(S,S) is an H-separable extension of S. Hence, S is a centrally
projective SG-module [8, Proposition 11]. Moreover, since VS(SG) is an Azumaya C-
algebra by hypothesis, it is centrally projective over C . This implies that S⊗C (VS(SG))◦
is centrally projective over S; and so S is an H-separable extension of SG (see [8,
Corollary 3, page 202]). Consequently, S is an H-separable and CP-Galois extension
over SG.

Theorem 3.4. S is an H-separable and faithfully G-Galois extension of SG if and
only if S∗G � S⊗C (VS(SG))◦ such that VS(SG) is a projective separable C-algebra and
S is an Azumaya C-algebra.

Proof. (⇒) Since S is an H-separable G-Galois extension of SG, S ∗ G � S ⊗C
(VS(SG))◦, where VS(SG) is a projective separable C-algebra [9, Proposition 4]. Also,
S is a faithfully G-Galois extension of SG, so S∗G is an Azumaya Z-algebra. Hence,
S⊗C (VS(SG))◦ is an Azumaya C′-algebra, where C′ is the center of VS(SG). But S⊗C
(VS(SG))◦ � (S ⊗C C′)⊗C′ (VS(SG))◦, so both S ⊗C C′ and VS(SG) are Azumaya C′-
algebras by the commutator theorem for Azumaya algebras (see [3, Theorem 4.3,
page 57]). Since VS(SG) is a projective separable C-algebra, C is a direct summand
of VS(SG). Hence, C is a direct summand of C′. This implies that S is an Azumaya
C-algebra [3, Corollary 1.10].
(⇐) Since S∗G � S⊗C (VS(SG))◦ � (S⊗C C′)⊗C′ (VS(SG))◦ as Azumaya C′-algebras,

S ∗G is an Azumaya Z-algebra and S is a faithful left S ∗G-module. Thus, S is a
faithfully G-Galois extension. Moreover, VS(SG) is a projective separable C-algebra,
so it is finitely generated [3, Proposition 2.1]. Hence, VS(SG) is a centrally projective
C-module, and so S ⊗ (VS(SG))◦ is centrally projective over S. Thus, S ∗G is cen-
trally projective over S. Noting that S ∗G � HomSG(S,S), we conclude that S is an
H-separable extension of SG [8, Corollary 3].

Corollary 3.5. If S is an H-separable and faithfully G-Galois extension of SG, then
SG is a projective separable CG-algebra.
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Proof. Since S is an H-separable and G-Galois extension of SG, VS(VS(SG)) = SG
[9, Proposition 4]. Therefore, C(= VS(S)) is contained in VS(VS(SG)) = SG. Hence,
C = CG. Thus, by Theorem 3.4, S is an Azumaya CG-algebra. Noting that S is finitely
generated and projective over SG and SG is an SG-direct summand of S (for n is a unit
in S), we see that SG is a projective separable CG-algebra [3, Proposition 1.13].

4. CP and faithfully Galois extensions. It can be shown that Azumaya Galois ex-
tensions are included in the class of CP and faithfully Galois extensions, respectively,
and that the later two classes are noncomparable. In this section, we give sufficient
conditions under which a CP-Galois extension is an Azumaya Galois extension, and a
faithfully Galois extension is an Azumaya Galois extension. Consequently, the class
of Azumaya Galois extensions is the intersection of the class of CP-Galois extensions
and the class of faithfully Galois extensions.

Theorem 4.1. S is a CP-Galois extension of SG which is an Azumaya algebra if and
only if S is an Azumaya Galois extension of SG.

Proof. Since S is a CP-Galois extension, S∗G is an H-separable over S by the ar-
gument in the proof of Theorem 3.3. Hence, Z = CG [2, Theorem 3.1]. Again, since S
is a CP-Galois extension, S is a progenerator over SG. Therefore, S∗G is a projective
H-separable extension of SG [8, Theorem 6]. Since SG is an Azumaya algebra, S∗G is
an Azumaya algebra [7, Theorem 1]. Thus, S∗G is an Azumaya CG-algebra. Now, con-
sider S∗G � HomSG(S,S) as a CG-subalgebra of HomCG(S,S) which is an Azumaya
CG-algebra since S is finitely generated and projective over CG. By the commutator
theorem for Azumaya algebras, VHomCG (S,S)(S ∗G) is an Azumaya CG-algebra. Not-
ing that SG � HomS∗G(S,S) � VHomCG (S,S)(S ∗G) and Z = CG, we have that SG is an

Azumaya CG-algebra. So, S is an Azumaya Galois extension of SG.
Conversely, suppose that S is an Azumaya Galois extension of SG. Then, S � SG⊗CG

VS(SG) such that VS(SG) is a G-Galois algebra over CG [1, Theorem 2]. Hence, S is a
CP-Galois extension of SG. This completes the proof.

Theorem 4.2. S is a CP and faithfully Galois extension of SG if and only if S is an
Azumaya Galois extension.

Proof. (⇐) Let S be an Azumaya Galois extension of SG. Then, by Theorem 4.1,
S is a CP-Galois extension of SG. Moreover, by the proof of Theorem 4.1, S∗G is an
Azumaya Z-algebra. Since S is a G-Galois extension, S is a faithful left HomSG(S,S)-
module. Therefore, S is a faithful left S∗G-module since S∗G � HomSG(S,S). Hence,
S is also a faithfully Galois extension of SG.
(⇒) By Theorem 4.1, it suffices to show that SG is an Azumaya algebra. In fact, SG �

HomS∗G(S,S)� VHomZ(S,S)(S∗G). Since S is faithfully Galois, S∗G is Z-Azumaya and
S is a progenerator over Z . Therefore, HomZ(S,S) is an Azumaya Z-algebra. Thus,
VHomZ(S,S)(S∗G) is an Azumaya algebra. Hence, SG is an Azumaya algebra.

Corollary 4.3. The class of Azumaya Galois extensions is the intersection of the
class of CP-Galois extensions and the class of faithfully Galois extensions.

Proof. The Corollary is immediate by Theorem 4.2.
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Next, we give four examples of Galois extensions S to demonstrate the relations
among different classes of Galois extensions:

(1) S is an H-separable G-Galois extension, but not a faithfully Galois extension,
(2) S is an H-separable G-Galois extension, but not a CP-Galois extension,
(3) S is an Azumaya Galois extension, but not an H-separable Galois extension,
(4) S is an H-separable Galois extension, but not an Azumaya Galois extension.

Example 4.4. S is an H-separable G-Galois extension, but not a faithfully Galois
extension.
Let T be the tensor product of infinite copies of the 2×2 matrix algebraM2(Q) over

the rational field Q, that is, T = M2(Q)⊗M2(Q)⊗···⊗M2(Q)⊗··· . Then it is easy
to check that the center of T is a tensor product of infinite copies of Q and contains
a proper subalgebra that is isomorphic to Q by the map a→ a⊗a⊗···⊗a⊗··· for
all a ∈ Q. For convenience, we identity a and a⊗a⊗···⊗a⊗··· . Since M2(Q) has
rank 4 over Q, T is infinitely generated over its center Q⊗Q⊗···⊗Q⊗··· . Hence, T
is non-Azumaya algebra such that 2−1 ∈ T . Let S = T[i,j,k] be the quaternion algebra
over T andG = {1,gi,gj,gk}, where gi(x)= ixi−1, gj(x)= jxj−1, and gk(x)= kxk−1
for all x in S. Then
(1) S is a G-Galois extension of SG with a Galois system {1/2, i/2,j/2,k/2;1/2,−i/2,

−j/2,−k/2}.
(2) S is an H-separable extension of SG by [9, Corollary 3.3]. Hence, S is an H-

separable G-Galois extension of SG.
(3) S∗G is an H-separable G′-Galois extension of (S∗G)G′ such that S∗G � S⊗C

(VS(SG))◦, where VS(SG) is a projective separable C-algebra [9, Proposition 4]. Noting
that S is not an Azumaya C-algebra for T is not Azumaya, S∗G is not an Azumaya
Z-algebra by Theorem 3.4. Thus, S is not a faithfully Galois extension, but it is an
H-separable G-Galois extension.

Example 4.5. S is anH-separableG-Galois extension, but not a CP-Galois extension.
Let S be any G-Galois extension with Galois group G. Then S∗G is an H-separable

Galois extension, but not a CP-Galois extension by Theorem 3.2.

Example 4.6. S is an Azumaya Galois extension, but not an H-separable Galois
extension.
Let T = M2×2(Q) be the full matrix ring of order 2 over the rational field Q and

S = T × T = {(a,b) | a,b ∈ T}, and G = {1,g | g(a,b) = (b,a) for all (a,b) ∈ S}.
Then,
(1) g2 = 1.
(2) SG = {(a,a) | a∈ T} � T .
(3) T is an Azumaya D-algebra, where D =QI ≈Q and I is the identity of T .
(4) C =D×D.
(5) CG = {(d,d) | d∈D} ≈Q.
(6) S is aG-Galois extension of SG with theG-Galois system: {(0,1),(1,0);(0,1),(1,0)}.
(7) SG is an Azumaya CG-algebra.
(8) S is an Azumaya Galois extension by (6) and (7).
(9) VS(SG)=D×D = C .
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(10) S is not an H-separable Galois extension. Suppose that S is an H-separable
Galois extension. Since n(= 2) is a unit in S, VS(SG)(=D×D = C) is finitely generated
projective over C of rank 2 [9, Proposition 4]. This is a contradiction.

Remark 4.7. By Corollary 4.3, Example 4.6 can be considered as an example of
(i) S is a CP-Galois extension, but not an H-separable Galois extension, or (ii) S is a
faithfully Galois extension, but not an H-separable Galois extension.

Example 4.8. S is an H-separable Galois extension, but not an Azumaya Galois
extension.
Let S =Q[i,j,k] be the quaternion algebra over the rational field Q and G = {1,gi |

gi(x)= ixi−1 for all x in Q[i,j,k]}. Then S is a G-Galois extension of SG with the G-
Galois system {1/2,−i/2,−j/2,−k/2;1/2, i/2,j/2,k/2}. It is easy to check that SG =
Q[i] which is a commutative separable Q-algebra. But the center of S is Q(= CG), so
SG is not an Azumaya CG-algebra. Thus, S is not an Azumaya Galois extension. But S is
projective over SG and S =Q[i,j,k] is an Azumaya Q-algebra, so S is an H-separable
extension of SG [5, Theorem 1].
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