A NOTE ON θ -GENERALIZED CLOSED SETS

C. W. BAKER

(Received 22 September 1999)

ABSTRACT. The purpose of this note is to strengthen several results in the literature concerning the preservation of θ -generalized closed sets. Also conditions are established under which images and inverse images of arbitrary sets are θ -generalized closed. In this process several new weak forms of continuous functions and closed functions are developed.

2000 Mathematics Subject Classification. Primary 54C10.

- **1. Introduction.** Recently Dontchev and Maki [5] have introduced the concept of a θ -generalized closed set. This class of sets has been investigated also by Arockiarani et al. [1]. The purpose of this note is to strengthen slightly some of the results in [5] concerning the preservation of θ -generalized closed sets. This is done by using the notion of a θ -c-closed set developed by Baker [2]. These sets turn out to be a very natural tool to use in investigating the preservation of θ -generalized closed sets. In this process we introduce a new weak form of a continuous function and a new weak form of a closed function, called θ -g-c-continuous and θ -g-c-closed, respectively. It is shown that θ -g-c-continuity is strictly weaker than strong θ -continuity and that θ -g-c-closed is strictly weaker than θ -g-closed.
- **2. Preliminaries.** The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. If A is a subset of a space X, then the closure and interior of A are denoted by Cl(A) and Int(A), respectively. The θ -closure of A [8], denoted by $Cl_{\theta}(A)$, is the set of all $x \in X$ for which every closed neighborhood of x intersects A nontrivially. A set A is called θ -closed if $A = Cl_{\theta}(A)$. The θ -interior of A [8], denoted by $Int_{\theta}(A)$, is the set of all $x \in X$ for which A contains a closed neighborhood of x. A set A is said to be θ -open provided that $A = Int_{\theta}(A)$. Furthermore, the complement of a θ -open set is θ -closed and the complement of a θ -closed set is θ -open.

DEFINITION 2.1 (Dontchev and Maki [5]). A set A is said to be θ -generalized closed (or briefly θ -g-closed) provided that $\operatorname{Cl}_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A set is called θ -generalized open (or briefly θ -g-open) if its complement is θ -generalized closed.

The following theorem from [5] gives a useful characterization of θ -g-openness.

560 C. W. BAKER

THEOREM 2.2 (Dontchev and Maki [5]). A set A is θ -g-open if and only if $F \subseteq \operatorname{Int}_{\theta}(A)$ whenever $F \subseteq A$ and F is closed.

DEFINITION 2.3 (Dontchev and Maki [5]). A function $f: X \to Y$ is said to be θ -g-closed provided that f(A) is θ -g-closed in Y for every closed subset F of X.

DEFINITION 2.4 (Dontchev and Maki [5]). A function $f: X \to Y$ is said to be θ -g-irresolute (θ -g-continuous), if for every θ -g-closed (closed) subset A of Y, $f^{-1}(A)$ is θ -g-closed in X.

DEFINITION 2.5 (Noiri [7]). A function $f: X \to Y$ is said to be strongly θ -continuous provided that, for every $x \in X$ and every open neighborhood V of f(x), there exists an open neighborhood U of x for which $f(\operatorname{Cl}(U)) \subseteq V$.

3. Sufficient conditions for images of θ -g-closed sets to be θ -g-closed. Dontchev and Maki [5] proved that the θ -g-closed, continuous image of a θ -g-closed set is θ -g-closed. In this section, we strengthen this result by replacing both the θ -g-closed and continuous requirements with weaker conditions. Our replacement for the θ -g-closed condition uses the concept of a θ -c-open set from [2].

DEFINITION 3.1 (Baker [2]). A set *A* is said to be θ -*c*-closed provided there is a set *B* for which $A = \operatorname{Cl}_{\theta}(B)$.

We define a function $f: X \to Y$ to be θ -g-c-closed if f(A) is θ -g-closed in Y for every θ -c-closed set A in X. Since θ -c-closed sets are obviously closed, θ -g-closed implies θ -g-c-closed. The following example shows that the converse implication does not hold.

EXAMPLE 3.2. Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and let $f: X \to X$ be the identity mapping. Since the θ -closure of every nonempty set is X, f is obviously θ -g-c-closed. However, since $f(\{c\})$ fails to be θ -g-closed, f is not θ -g-closed.

THEOREM 3.3. If $f: X \to Y$ is continuous and θ -g-c-closed, then f(A) is θ -g-closed in Y for every θ -g-closed set A in X.

PROOF. Assume A is a θ -g-closed subset of X and that $f(A) \subseteq V$, where V is an open subset of Y. Then $A \subseteq f^{-1}(V)$, which is open. Since A is θ -g-closed, $\operatorname{Cl}_{\theta}(A) \subseteq f^{-1}(V)$ and hence $f(\operatorname{Cl}_{\theta}(A)) \subseteq V$. Because $\operatorname{Cl}_{\theta}(A)$ is θ -c-closed and f is θ -g-c-closed, $f(\operatorname{Cl}_{\theta}(A))$ is θ -g-closed. Therefore $\operatorname{Cl}_{\theta}(f(\operatorname{Cl}_{\theta}(A))) \subseteq V$ and hence $\operatorname{Cl}_{\theta}(f(\operatorname{Cl}_{\theta}(A))) \subseteq V$, which proves that f(A) is θ -g-closed.

COROLLARY 3.4 (Dontchev and Maki [5]). *If* $f: X \to Y$ *is continuous and* θ -g-closed, then f(A) is θ -g-closed in Y for every θ -g-closed subset A of X.

Theorem 3.3 can be strengthened further by replacing continuity with a weaker condition. Instead of requiring inverse images of open sets to be open, we require that the inverse images of open sets interact with θ -g-closed sets in the same way as open sets.

DEFINITION 3.5. A function $f: X \to Y$ is said to be approximately θ -continuous (or briefly a- θ -continuous) provided that $\operatorname{Cl}_{\theta}(A) \subseteq f^{-1}(V)$ whenever $A \subseteq f^{-1}(V)$, A is θ -g-closed, and V is open.

The proof of Theorem 3.3 is easily modified to obtain the following result.

THEOREM 3.6. If $f: X \to Y$ is a- θ -continuous and θ -g-c-closed, then f(A) is θ -g-closed in Y for every θ -g-closed set A in X.

Obviously continuity implies a- θ -continuity and the following example shows that a- θ -continuity is strictly weaker than continuity.

EXAMPLE 3.7. Let (X,τ) be the space in Example 3.2 and let $\sigma = \{X, \emptyset, \{b\}\}$. Then the identity mapping $f: (X,\tau) \to (X,\sigma)$ is not continuous but is a- θ -continuous.

In [4] Dontchev defined a function to be contra-continuous provided that inverse images of open sets are closed. We modify this concept slightly to obtain a θ -contra-continuous function.

DEFINITION 3.8. A function $f: X \to Y$ is said to be θ -contra-continuous if for every open subset V of Y, $f^{-1}(V)$ is θ -closed.

If the continuity requirement in Theorem 3.3 is replaced with θ -contra-continuity, then a much stronger result is obtained. The step in the proof of Theorem 3.3 where we obtain $\operatorname{Cl}_{\theta}(A) \subseteq f^{-1}(V)$ now holds for every set A, because $f^{-1}(V)$ is θ -closed. Therefore we have the following theorem.

THEOREM 3.9. If $f: X \to Y$ is θ -contra-continuous and θ -g-c-closed, then f(A) is θ -g-closed in Y for every subset A of X.

4. Sufficient conditions for θ -g-**irresoluteness.** Dontchev and Maki [5] proved that a strongly θ -continuous, closed function is θ -g-irresolute. We strengthen this result slightly by replacing strong θ -continuity and closure with weaker conditions.

We define a function $f: X \to Y$ to be θ -g-c-continuous provided that, for every θ -c-closed subset A of Y, $f^{-1}(A)$ is θ -g-closed. Since strong θ -continuity is equivalent to the requirement that inverse images of closed sets be θ -closed [6], strong θ -continuity obviously implies θ -g-c-continuity. The function in Example 3.2 is θ -g-c-continuous but not strongly θ -continuous.

THEOREM 4.1. If $f: X \to Y$ is θ -g-c-continuous and closed, then f is θ -g-irresolute.

PROOF. Assume $A \subseteq Y$ is θ -g-closed and that $f^{-1}(A) \subseteq U$, where U is open. Then $X - U \subseteq X - f^{-1}(A)$ and we see that $f(X - U) \subseteq Y - A$. Since A is θ -g-closed, Y - A is θ -g-open. Also, since f is closed, f(X - U) is closed. Thus $f(X - U) \subseteq \operatorname{Int}_{\theta}(Y - A) = Y - \operatorname{Cl}_{\theta}(A)$ or $X - U \subseteq f^{-1}(Y - \operatorname{Cl}_{\theta}(A)) = X - f^{-1}(\operatorname{Cl}_{\theta}(A))$ and we have that $f^{-1}(\operatorname{Cl}_{\theta}(A)) \subseteq U$. Since f is θ -g-continuous, $f^{-1}(\operatorname{Cl}_{\theta}(A))$ is θ -g-closed. Therefore $\operatorname{Cl}_{\theta}(f^{-1}(A)) \subseteq \operatorname{Cl}_{\theta}(f^{-1}(\operatorname{Cl}_{\theta}(A))) \subseteq U$, which proves that $f^{-1}(A)$ is θ -g-closed. Thus f is θ -g-irresolute.

562 C. W. BAKER

COROLLARY 4.2 (Dontchev and Maki [5]). *If* $f: X \to Y$ *is strongly* θ -continuous and closed, then f is θ -g-irresolute.

Obviously θ -g-continuity implies θ -g-c-continuity. Therefore we have the following result.

COROLLARY 4.3. *If* $f: X \to Y$ *is* θ -g-continuous and closed, then f *is* θ -g-irresolute.

The function in Example 3.2 is θ -g-c-continuous but not θ -g-continuous.

Theorem 4.1 can be strengthened in much the same way as Theorem 3.3 was strengthened by replacing the closure requirement with a weaker condition.

DEFINITION 4.4. A function $f: X \to Y$ is said to be approximately θ -closed (or briefly a- θ -closed) provided that $f(F) \subseteq \operatorname{Int}_{\theta}(A)$ whenever $f(F) \subseteq A$, F is closed, and A is θ -g-open.

Note that, under an a- θ -closed function, images of closed sets interact with θ -g-open sets in the same manner as closed sets. Obviously closed functions are a- θ -closed. The inverse of the function in Example 3.7 is a- θ -closed but not closed. The proof of the following theorem is analogous to that of Theorem 4.1.

THEOREM 4.5. If $f: X \to Y$ is θ -g-c-continuous and a- θ -closed, then f is θ -g-irresolute.

Finally, Theorem 4.1 can be modified by replacing the requirement that the function be closed with a variation of a contra-closed function. Contra-closed functions, introduced by Baker [3], are characterized by having open images of closed sets.

DEFINITION 4.6. A function $f: X \to Y$ is said to be θ -contra-closed provided that f(F) is θ -open for every closed subset F of X.

THEOREM 4.7. If $f: X \to Y$ is θ -g-c-continuous and θ -contra-closed, then for every subset A of Y $f^{-1}(A)$ is θ -g-closed (and hence also θ -g-open).

The proof of Theorem 4.7 follows that of Theorem 4.1, except that the step $f(X - U) \subseteq \operatorname{Int}_{\theta}(Y - A)$ holds for every subset A of Y because f(X - U) is θ -open.

REFERENCES

- I. Arockiarani, K. Balachandran, and M. Ganster, Regular generalized locally closed sets and RGL-continuous functions, Indian J. Pure Appl. Math. 28 (1997), no. 5, 661–669.
 CMP 1 459 608. Zbl 884.54006.
- [2] C. W. Baker, On θ -C open sets, Int. J. Math. Math. Sci. 15 (1992), no. 2, 255–259. CMP 1 155 517. Zbl 774.54018.
- [3] ______, Contra-open functions and contra-closed functions, Math. Today (Ahmedabad) 15 (1997), 19–24. MR 98f:54016. Zbl 903.54008.
- [4] J. Dontchev, *Contra-continuous functions and strongly S-closed spaces*, Int. J. Math. Math. Sci. **19** (1996), no. 2, 303–310. MR 96m:54021. Zbl 927.54037.
- [5] J. Dontchev and H. Maki, *On* θ -generalized closed sets, Int. J. Math. Math. Sci. **22** (1999), no. 2, 239–249. MR 2000b:54045. Zbl 927.54037.
- [6] P. E. Long and L. L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc. 18 (1981/82), no. 1, 21–28. MR 83b:54011. Zbl 478.54006.

- [7] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. 16 (1979/80), no. 2, 161–166. MR 82b:54020. Zbl 435.54010.
- [8] N. V. Veličko, H-closed topological spaces, Mat. Sb. (N.S.) 70(112) (1966), 98-112.
 MR 33#6576.

C. W. Baker: Department of Mathematics, Indiana University Southeast, New Albany, IN 47150, USA

E-mail address: cbaker@ius.edu