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1. Introduction. In this article, we begin the analysis of translation planes of order
q3 that admit collineation groups G which leave invariant a subplane π0 of order q,
act flag transitively on π0 and act transitively on the set of components not in π0.

In two previous, related articles (see [6, 7]), the general study of translation planes
which are extensions of flag-transitive planes is undertaken.

An “extension of a flag-transitive plane” is an affine plane π containing an affine
subplane π0 and a collineation group which leaves π0 invariant, acts flag-transitively
on π0 and acts transitively on the parallel classes of π not in π0.

The main results of these two articles are as follows.

Theorem 1.1 (see Hiramine et al. [7]). Let π be a finite translation plane which is a
quadratic extension of a flag-transitive plane π0.
Then π is either Desarguesian, Hall, or the derived likeable Walker plane of order 25.
In particular,
(1) if the associated collineation group is non-solvable, then π is Desarguesian and
(2) if the associated collineation group is solvable, then π is Hall, Desarguesian of

order 4 or 9 or the derived likeable Walker plane of order 25.

The motivation to consider “cubic extensions” arises partially from the following
result.

Theorem 1.2 (see Hiramine et al. [6]). Let π be a finite translation plane of order
qn which is a solvable extension of a proper flag-transitive plane π0 of order q. Let G
denote the corresponding group.
Then one of the following occur.
(1) π is Desarguesian and (q,n) is in {(2,2),(2,3),(3,2),(3,3),(2,5)}.

(a) For (2,2),(2,3), the group SL(2,2) is a (3,2)- or (3,6)-transitive group,
respectively.

(b) For (3,2),(3,3), the group SL(2,3) is a (4,6)- or (4,24)-transitive group,
respectively.

(c) For (2,5), the group SL(2,2)×Z5 is a (3,30)-transitive group.
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(2) n= 2 and π is either
(a) Hall or
(b) the derived likeable Walker plane of order 25.

(3) n= 3.
(4) n> 3 and q = 2,3, or 4.
Furthermore, one of the following occurs.
(a) q = 2 and there is a normal subgroup generated by elations isomorphic to SL(2,2)

which acts doubly-transitively on the infinite points of π0. Also, the Sylow 2-subgroups
have order 2 and the full group G[π0] which fixes π0 pointwise has index 6 so that
SL(2,2)G[π0] is the full translation complement.
In addition, if n is even then the spread is a union of Desarguesian nets of degree 5

containing π0 and there is a regular partial 2-parallelism of 2n−1 − 1 2-spreads in
PG(2n−1,2),

(b) q = 3 and n is even. Furthermore, there is a normal subgroup generated by 3-
elements such that the restriction to π0 is isomorphic to SL(2,3) and which acts doubly
transitively on the infinite points of π0. The Sylow 3-subgroups are non-planar groups
of order 3 and the full groupG[π0] which fixesπ0 pointwise has index 24 so SL(2,3)G[π0]

is the full translation complement.
If the 3-elements elements are elations, the spread is a union of Desarguesian nets

of degree 10 containing π0 and there is a regular partial 2-parallelism of (3n−1−1)/2
2-spreads in PG(2n−1,3). Furthermore, if the 3-elements are not elations then n≥ 20.

(c) q = 4 and n= 4.
(d) q = 4 and n> 4. Then all involutions are elations and there is a normal subgroup

generated by elations that acts doubly transitively on the infinite points of π0.
Furthermore, the Sylow 2-subgroups are cyclic of order 4 and there is a normal 2-

complement. If τ is a collineation of order 4 then π may be decomposed into a direct
sum of n cyclic τGF(2)-submodules of dimension 4 and each Sylow 2-group pointwise
fixed subspace has cardinality 2n.

There are very strong reasons why the cubic extensions do not appear in the state-
ment of the previous result.

In Jha et al. (see [8, 9]), a classification is given of a large subclass of translation
planes called generalized Desarguesian planes of order q3 that admit GL(2,q). There
are many mutually nonisomorphic planes of this type and where the kernel of the
plane may be chosen in a variety of ways.

In these planes, the associated vector space is a standardGF(q)GL(2,q)module. The
effect of this is that a group isomorphic to SL(2,q) is generated by elation groups and
that GL(2,q) leaves invariant each subplane of order q incident with the zero vector in
the associated GF(q)-regulus net defined by the elation axes of SL(2,q). Furthermore,
there are always infinite orbits of lengths q+ 1 and q3 − q. In a translation plane,
there is always a translation subgroup acting transitive on any affine subplane so
we obtain a tremendous variety of cubic extensions of a Desarguesian flag-transitive
plane admitting non-solvable collineation groups when q > 3.

In this article, we are also able to note that the Lüneburg-Tits plane of order 218 is
a cubic extension of a Lüneburg-Tits subplane of order 26.
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We divide the consideration of cubic extensions into planes of even and odd orders
and develop here results for the even order case only.

Fundamentally, our results are mainly group theoretic.
We analyze the collineation groups of cubic extensions and are able to generally

formulate a classification.
In particular, when the order is even then, without any further assumptions, we are

able to show that there is always a collineation group isomorphic to either SL(2,q) or
Sz(
√q) which is generated by elation groups.
For convenience, we recall some definitions.

Definition 1.3. If an affine plane π of order qn admits a collineation group G
which has infinite point orbits of lengths q+1 and (qn−q), we call π a “(q+1,qn−q)-
transitive plane” and G a “(q+1,qn−q)-transitive group.”

If G leaves a subplane π0 of order q invariant within the net of length q+1 and
there is a collineation group transitive on the sets of affine and infinite points of π0

and the infinite points of π−π0 then π0 is a flag-transitive affine plane and we shall
call π an “extension of π0.”

If the group of an extension is solvable, we shall call the plane a “solvable extension.”

2. The Lüneburg-Tits planes. We have noted that there are a variety of translation
planes of orders q3 admitting a collineation group isomorphic to SL(2,q) which are
cubic extensions of a Desarguesian affine plane of order q. We show that it is possible
to have extensions of non-Desarguesian planes of order q. We first note a result on
the structure of nets containing sufficiently many subplanes.

Theorem 2.1. Let π be a translation plane of order qn admitting a subplane π0

of order q and kernel D isomorphic to GF(pt0) where q = pr . Let � denote the net of
degree q+1 determined by the components of π0.
If there exist n+1 subplanes of � such that any n of them direct sum to π , then

all subplanes are isomorphic and there are exactly (pt0n−1)/(pt0−1) subplanes of �

incident with the zero vector.

Proof. Let � denote the enveloping algebra of � (the algebra generated by the
slope mappings). Then all subplanes of � are irreducible �-modules. Let the n+ 1
subplanes be denoted by πi for i = 1,2, . . . ,n+1. Then

⊕n
i=1πi =

⊕n+1
i=2 πi. Let v1 =

v2+···+vn+vn+1, where vi ∈ πi for i = 1,2, . . . ,n+1. Thus, vn+1 ≠ 0 if and only
if v1 ≠ 0. Since the subplanes are �-irreducible, the mapping v1

� �� vn+1 is an �-
isomorphism. Similarly, we may choose any subplane πj and find an �-isomorphism
from πj onto πn+1. Hence, all subplanes πi are �-isomorphic to πn+1. It then fol-
lows that � acts faithfully on π1 so by Liebler [11] Theorem 1.4(b), the result follows.

In this section, we consider whether there are Lüneburg-Tits planes of order q3

which are cubic extensions of a flag-transitive plane π0. The subplane π0 is Desargue-
sian or Lüneburg-Tits. In order to better consider the action of the collineation group,
we develop some background on these planes and their representation.
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Proposition 2.2. Let π be a Lüneburg-Tits plane of order 22(2r+1) with spread in
PG(3,K � GF(22r+1)). Denote the points of π by (x1,x2,y1,y2) for all xi, yi ∈ K, i =
1,2. Let x = (x1,x2), y = (y1,y2). Let σ : x1

� �� x2r+1
1 so that xσ2

1 = x2
1 for all x1 ∈K.

Then the spread has the following representation:

{
(x = 0)

}∪

y = x

[
bσ b+aσ+1

b+aσ+1 aσ

]
; a,b ∈K


. (2.1)

Proof. This representation may be obtained from that described in Lüneburg [12,
Section 13] by the basis change:

(
z1,z2,w1,w2

) � �� (z1,w1,z2,w2
)
. (2.2)

Proposition 2.3. Let π be a Lüneburg-Tits plane with representation as in the
previous proposition. Then, the following mappings define collineations of π :

ω : (x,y) � �� (y,x),{
τ(a,b) : (x,y) � �� (x,y)Ta,b; a,b ∈K

}
,

(2.3)

where

Ta,b =



1 a ab+aσ+2+bσ b
0 1 aσ+1+b aσ

0 0 1 0
0 0 a 1


 ,

{
η(k) : (x,y) � �� (x,y)Mk; k∈K−{0}},

(2.4)

where

Mk =



1 0 0 0
0 kσ+1 0 0
0 0 kσ+2 0
0 0 0 k


 ,

{
aut

(
ρz
)
: (x,y) � �� (xρz ,yρz

)
; ρz ∈AutK

}
,

(2.5)

where
xρz = (x2z

1 ,x2z
2

)
,

{
s(α) : (x,y) � �� (x,y)Kα; α∈K−{0}}, (2.6)

where

Kα =



α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α


 . (2.7)

Furthermore, the full translation complement is

〈
ω,τ(a,b),η(k),aut

(
ρz
)
,s(α)

〉 ∀a,b ∈K, ∀k,α∈K−{0}, and ∀ρz ∈AutK. (2.8)
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In particular, the group

〈
ω,τ(a,b),η(k)

〉� Sz(q) (2.9)

acts 2-transitively on the components of π .

Proof. This follows immediately from Lüneburg [12, Section 13] and, in particular
(13.7), with the basis change indicated above. Also, see Section 1 of [12] where the
mappings generating the Suzuki group Sz(q) are considered. We note that although
the notation used here is the same as that used by Lüneburg, our mappings reflect
the basis change.

It is generally known that the Lüneburg-Tits spreads are regulus-free and this is
easily verified using our matrix representation.

Corollary 2.4. The spreads for the Lüneburg-Tits planes are regulus-free.

Proof. Since the group acts 2-transitive on the components, we may assume that
two of the components for a regulus are x = 0 and y = 0. Assume that a third com-
ponent is

y = x
[

bσ0 b0+aσ+10

b0+aσ+10 aσ0

]
(2.10)

for a fixed b and a in K. Choose a new basis for the spread by applying the mapping

(x,y) � �� (x,y)
[

bσ0 b0+aσ+10

b0+aσ+10 aσ0

]−1
. (2.11)

If x = 0, y = 0, y = x are components for a regulus � then it is well known that the
remaining components have the general form

y = x
[
u 0
0 u

]
∀u∈K−{0}. (2.12)

Thus, it must be that we have components of the form

y = x
[
u 0
0 u

][
bσ0 b0+aσ+10

b0+aσ+10 aσ0

]
∀u∈K (2.13)

under the original representation. Hence, it follows that there must be elements in K
satisfying the following conditions: let ubσ0 = bσ1 and uaσ0 = aσ1 so that

b0+aσ+10 = b1+aσ+11 . (2.14)

So, we obtain

b0+aσ+10 =uσ−1b0+uaσ0 uσ−1a0 =uσ−1(b0+aσ+10

) ∀u. (2.15)

Thus,

b0 = aσ+10 . (2.16)
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Hence, we must have components of the form

y = x
[
u 0
0 u

][
aσ(σ+1)0 0

0 aσ0

]
∀u∈K. (2.17)

However, we have elements of the form

y = x
[
aσ(σ+1) 0

0 aσ

]
∀u∈K. (2.18)

Thus, if vσ =u then we obtain

vσ(σ+1) = vσ ∀v ∈K (2.19)

which obviously is a contradiction.

Theorem 2.5. Let π be a Lüneburg-Tits plane of order 22(2r+1).
(1) Then the spread for π is a union of Desarguesian partial spreads of degree 5 that

share a line.
Hence, there are Desarguesian subplanes π0 of order 4.
(2) If 2r1+1 divides 2r +1 and 2r1+1 > 1 then there is a Lüneburg-Tits subplane

πr1 of order 2
2(2r1+1).

(3) Let G denote the full translation complement of π . Let Kr1 denote the subfield of
K isomorphic to GF(22r1+1). The stabilizer of πr1 , Gπr1 , is

〈
ω,τ(a,b),η(k),aut

(
ρz
)
,s(α)

〉 ∀a,b ∈Kr1 , ∀k,α∈Kr1−{0}, and ∀ρz ∈AutK.
(2.20)

(4) Given any subplane πr1 and r1 > 0, there exist exactly (22r+1−1)/(22r1+1−1)
Lüneburg-Tits subplanes that share the same components as πr1 .

Proof. Restrict the points (x1,x2,y1,y2) of πr1 so that xi, yi ∈Kr1 . Then

{
(x = 0)

}∪

y = x

[
bσ b+aσ+1

b+aσ+1 aσ

]
; a,b ∈Kr1


 (2.21)

is the set of components of πr1 . The stabilizer subgroup is clearly as claimed as the
collineations induced from automorphisms of K leave Kr1 invariant. Note that when
K0 is isomorphic to GF(2), it is immediate that the partial spread above for all a,b in
K0 is a partial spread defined by a field of matrices isomorphic to GF(4). Hence, we
obtain a Desarguesian partial spread of degree 5.

When r1 > 0, the group of kernel homologies of πr1 is isomorphic to Kr1 −{0} so
there exist (22r+1−1)/(22r1+1−1) images of πr1under the kernel homology group and
hence this number of subplanes isomorphic to πr1 sharing the components of πr1 .
Using the notation of Theorem 2.1, we have q = 22(2r1+1) so that n= (2r +1)/(2r1+1)
and pt0 = 22r1+1. Themaximum number of subplanes according to the result is (pt0n−
1)/(pt0−1)= (22r+1−1)/(22r1+1−1) so we have the proof of the result.
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We now consider if there are Lüneburg-Tits planes which are n-dimensional exten-
sions of either a Desarguesian or a Lüneburg-Tits subplane.

Theorem 2.6. A Lüneburg-Tits plane of order h2n is an n-dimensional extension of
a subplane of order h2 if and only if one of the following occur:

(1) h= 2 and n= 3 or
(2) h= 23 and n= 3.
(3) Hence, there is a “chain” of 3-dimensional extensions π0 ⊆ π1 ⊆ π , where π0 is

Desarguesian of order 22, π1 is a Lüneburg-Tits plane of order 26 and π is a Lüneburg-
Tits plane of order 218.

Proof. We know the full translation complement of the plane π and the full sta-
bilizer of a subplane ρ. Assume that h = 22r1+1 and hn = 22r+1 so that n = (2r +
1)/(2r1+1). The order of the stabilizer subgroup restricted to the line at infinity is

h2(h2+1
)
(h−1)(2r +1). (2.22)

Now, in order that a subgroup act transitively on the h2n−h2 components not in ρ,
we must have

h2n−h2 divides h2(h2+1
)
(h−1)(2r +1), (2.23)

so that
h2(n−1)−1 divides

(
h2+1

)
(h−1)(2r +1). (2.24)

Since (h2+1)(h−1) divides h4−1 and n−1 is even, we must have

h2(n−1)−1(
h2+1

)
(h−1)

divides (2r +1), where hn = 22r+1. (2.25)

Note that 2(n−1)−4>n for n> 6 so that n is 3 or 5. When n= 5 then h= 2(2r+1)/5

so that
28(2r+1)/5−1(

22(2r+1)/5+1
)(
2(2r+1)/5−1

) divides (2r +1) (2.26)

which clearly cannot occur.
Hence, n= 3.
Now if n= 3, we must have

2(2r+1)/3+1 divides (2r +1). (2.27)

Thus, it can only be that 2r +1= 3 or 9.
It remains to show that we do obtain a cubic extension in either case.
First assume that 2r +1= 9.
Note that the order of Gρ modulo the kernel is

26(26+1
)(
23−1

)
9= 26(212−1

)= 218−26. (2.28)

Thus it remains to show that if an element g of Gρ fixes a component * not in ρ,
then g ∈ K∗, where K∗ denotes the kernel homology group. The stabilizer modulo
K∗ in Gρ of a component * has order dividing (29−1)9 in the full collineation group.



540 YUTAKA HIRAMINE ET AL.

Hence, the stabilizer of a component exterior to the components of π0 by a subgroup
of Gρ must have order divisible by (212−1,(29−1)9)= 9·7.

Furthermore, since a Sylow 3-group is cyclic, any 3-group must contain an element
fixing ρ pointwise. However, if an element of order 3 fixes *, there would be an element
of order 3 fixing a subplane ρ1 ≠ ρ pointwise.

Thus, the stabilizer of * in Gρ (modulo K∗) has order dividing 7. Suppose that an
element g of order 7 fixes *. Then g fixes two components of ρ so cannot be in Sz(23)
as an element of the normalizer of a Sylow 2-subgroup within Sz(29) fixes exactly two
components. Since g ∈ Sz(23)K∗(29−1)/(23−1), it follows that g is in K∗.

Hence, Sz(23)C9 is a group which fixes ρ and acts transitively on the components
of π and on the components of π−ρ so that π is a cubic extension of ρ.

Now assume that 2r +1 = 3. We notice that the stabilizer subgroup of ρ (now of
order 4) is

〈
ω,τ(a,b),η(k),aut

(
ρz
)
,s(α)

〉 ∀a,b ∈K0, ∀k,α∈K0−{0}, and ∀ρz ∈AutK.
(2.29)

This group is still 2-transitive on the set ∆ of infinite points of ρ and has order
4·5·3. Since the automorphism group maps

y = x
[

bσ b+aσ+1
b+aσ+1 aσ

]
onto y = x

[
bτσ bτ+aτ(σ+1)

bτ+aτ(σ+1) aτσ

]
, (2.30)

where τ is an automorphism of K, it follows that the collineation group induced from
an automorphism group of order 3 is semi-regular on the set Γ of infinite points out-
side of the infinite points of ρ. Similarly, it is clear that any group of order 4 is also
semi-regular on Γ . An element of order 5 acting on 26−22 = 60 components must fix
zero or at least five. However, since the group sits in a Suzuki group, it must act fixed-
point-free on Γ . Hence, the stabilizer subgroup acts transitively on the points of Γ .

Finally, we note the following corollary.

Corollary 2.7. The Lüneburg-Tits plane π of order 218 is a cubic extension of a
Lüneburg-Tits subplane π1 of order 26.
Furthermore, this is the unique cubic extension of a translation plane of order 26 with

kernel GF(29) that admits Sz(23).
The net of degree 26 + 1 defined by π1 admits exactly 1+ 23 + 26 Lüneburg-Tits

subplanes incident with the zero vector.

Proof. To show that the Lüneburg-Tits plane of order 218 is the unique cubic
extension plane with kernel GF(29) that admits Sz(23), we may appeal to Büttner [2]
who uses a computer program to enumerate the spreads in PG(3,29) admitting Sz(23).

The plane of order 218 has kernel GF(29) and the subplane has kernel GF(23). Hence,
there are (29−1)/(23−1)= 1+23+26 images of a given subplane under the full kernel
homology group. We note below that this forces this set to be the full set of subplanes
sharing ∆.
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3. Even order cubic extensions. We now point out that only the groups SL(2,q)
or Sz(

√q) are possible for even order cubic extensions. We show initially that the
subplanes are always completely determined.

Theorem 3.1. Let π be a cubic extension translation plane of even order q3 with
subplane π0 of order q. Then π0 is Desarguesian or Lüneburg-Tits.

Proof. There exists a group of order q(q2−1) acting on π0. We assert that the
2-groups must act faithfully. If not there is a Baer involution σ with fixed points in
π−π0. Hence, there is a subplane of order q3/2 which contains a subplane of order q
which cannot be the case.

First assume that the group is solvable. By Foulser et al. [3, (1.4)], any involution
induced on π0 is not Baer. Hence, an involution must be an elation acting on π0.

If the group is solvable and an involution in a Sylow 2-subgroup is an elation acting
on π0 then the plane is Desarguesian by Hering [4].

Assume that the group is non-solvable. Since the group is flag-transitive on π0,
we know that π0 is either Desarguesian or Lüneburg-Tits by Buekenhout et al. [1].

We will show that the involutions are always elations so that the group always
contains a more-or-less standard normal subgroup generated by elations. This is ac-
complished in two theorems. First we establish the nature of the abstract group.

Theorem 3.2. Let π be a translation plane which is a cubic extension of a subplane
π0 of order q.

(1) If q ≠ 4 then the full collineation group G contains a group H acting on π0 iso-
morphic to SL(2,q) or Sz(

√q), respectively, as the subplane π0 is Desarguesian or
Lüneburg-Tits.

(2) If q = 4 and the group is non-solvable then there is a subgroup acting on π0

isomorphic to SL(2,4). If the group is solvable then the Sylow 2-subgroups are cyclic of
order 4.

Proof. We know that π0 is either Desarguesian or Lüneburg-Tits by the previous
theorem.

First assume that π0 is Desarguesian and there is a faithful group induced of order
q so that this group is within ΓL(2,q). First assume that q/2> r , where q = 2r . Then,
there is a 2-group in GL(2,q) of order at least 4 which must be an elation group. Since
the full group is transitive, the group generated by the elations is also transitive and
since there is an elation group of order at least 4, it follows that SL(2,q) must be
generated. Since the group is transitive on the infinite points of π0, it follows that the
group contains SL(2,q). If q/2≯ r then r = 1 or 2. Hence, either SL(2,q) is contained
in G |π0 or q = 2 or 4.

If q = 2 then, of course, any translation plane of order 23 is Desarguesian but the
group is also transitive and the involutions on π0 are elations and hence SL(2,2) is
generated.

Hence, if we assume that the group is solvable, it must be that q = 2 or 4 and there
are no Baer involutions.
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If q = 4 assume that there is a 2-group of order at least 8. Since the induced
group lies in ΓL(2,4), there are Baer involutions in the solvable case which cannot
occur. Hence, the 2-group has order 4 if the group is solvable and is thus, elementary
abelian or cyclic. If the group is elementary abelian and there are no Baer involutions,
SL(2,4) is generated. Hence, Baer involutions exist which is a contradiction to solv-
ability. Hence, when the group is solvable, it follows that the 2-groups are cyclic.

Hence, if q > 4 and π0 is Desarguesian then the group is nonsolvable and restricted
to π0 contains SL(2,q).

So, assume that π0 is a Lüneburg-Tits plane. There are no Baer involutions acting
on π0, so the involutions induce elations on π0 and each axis is an elation axis. The
only involutions acting on π0 must actually be in Sz(

√q) acting on π0 since the outer
automorphism group has odd order. By Lüneburg [12, (4.12)], the only subgroups of
Sz(
√q) which have even order and are transitive are Sz(22m+1) type subgroups but

again transitivity forces 22m+1 =√q.

We now eliminate the possibility that the involutions are Baer.

Theorem 3.3. Let π be a translation plane which is a cubic extension of a subplane
π0 of order q.

(1) Then the involutions are elations.
(2) If q = 2r and r is odd thenπ0 is Desarguesian and the group generated by elations

is isomorphic to SL(2,q).

Proof. Hence, we may assume that Sz(
√q) is induced on the subplane.

We have shown that the 2-groups induce faithfully on π0 and there is always an
elation group of order

√q induced on π0.
Suppose that there is a Baer involution σ in the group. Then there is an element

of order 2 which fixes a component exterior to the net defined by the components of
π0. However, this means that the Sylow 2-subgroups have order at least 2q. Since the
2-groups induce faithfully on π0, it follows we can only have that π0 is Desarguesian
and q = 2r , where r is even as the order of a Sylow 2-group divides qr2 when π0 is
Desarguesian and divides q when π0 is Lüneburg-Tits. Furthermore, there must be a
Baer involution τ1 inducing a Baer involution on π0. Hence, if the involutions are not
elations then π0 is Desarguesian. But, note that if the group induced on π0 is Sz(

√q)
then the elations must, in fact, generate a group isomorphic to Sz(

√q).
If the involutions are elations then the group Sz(

√q) occurs only if r is even. We
note that all involutions in Sz(

√q) or SL(2,q) are conjugate.
If involutions inducing elations on π0 are, in fact, Baer on the plane then π0 is

Desarguesian.
Considering when the subgroup F fixing π0 pointwise is non-trivial, and H/F is

isomorphic to SL(2,q), the Sylow 2-subgroups are elementary abelian of order q.
Now assume that all involutions are Baer. Assume that the full translation comple-

ment has Sylow 2-subgroups of order 2aq. Assume that a Sylow 2-subgroup S con-
tains the subgroup E that induces an elation group of order q on the Desarguesian
subplane π0.

Then, there is a planar subgroup S− of order 2a. Since the group is planar and is
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faithful as acting on the Desarguesian plane π0, it follows that S− is cyclic of order
2a and fixes pointwise a Desarguesian subplane πa

0 of order q1/2a of π0. Let S− = 〈g〉
and let σ be in the center of S. Let q = 22bz=r , for (2,z)= 1. Notice that acting on π0,
we may represent S as a subgroup of

〈
(x,y) � �� (x2z ,y2z), σa : (x,y) � �� (x,xa+y); a∈ GF(q)

〉
(3.1)

which has order 2bq. The center of the latter group consists of the elements σa such
that a2z = a. Hence, there are involutions in the center of S and such involutions are
Baer acting on the plane and are elations acting on the subplane π0. Hence, σ1 is in
the center of S.

First assume that a> 1. Notice that g2a−2 is an involution as acting on Fixg2a−1 and
g2a−1 is a Baer involution leaving Fixσ1 invariant. We note that g2a−1 fixes exactly

√q
points of the unique component x = 0 fixed by S. Hence, g2a−1 cannot be an elation
on Fixσ1 since (x = 0)∩π0 is contained in a component of Fixσ1. Hence, g2a−1 is a
Baer involution on Fixσ1. That is, Fixg2a−1 ∩Fixσ1 is a subplane of order q3/4. Since
g2a−2 is an involution (or trivial) on Fixg2a−1 ∩Fixσ1 and fixes exactly 4

√q points on
x = 0 of π0, it cannot be an elation (or trivial) on Fixg2a−1 ∩Fixσ1. Hence, g2a−2 is a
Baer involution on Fixg2a−1 ∩Fixσ1 and fixes exactly a subplane of order q1/4 of π0.
So, g2a−2 fixes a subplane of order q3/8 of Fixσ1 so that there are q3/8−q1/4 common
fixed components outside of the components of π0.

Similarly, g2a−3 fixes a subplane of order q3/16 of Fixσ1 and fixes a subplane of π0

of order q1/8 so that there are q3/16−q1/8 common fixed components outside of the
components of π0.

By an easy induction argument, this says that S− fixes a subplane pointwise of Fixσ1

of order q3/2a+1 and fixes a subplane pointwise of π0 of order q1/2a . Hence, there are
q3/2a+1 −q1/2a common components fixed by σ1 and by S−. Hence, the stabilizer of
one of these common components has order at least 2a+1, a contradiction.

Now assume that a= 1. Then g is a Baer involution which induces a Baer involution
on π0 and so Fixg∩Fixσ1 is a Baer subplane of Fixσ1 of order q3/4 and g fixes exactly
q1/2 points on π0∩(x = 0). Thus, there are q3/4−q1/2 common components of Fixg
and Fixσ1 exterior to the components of π0 which implies that there is a stabilizer
2-group of order at least 4 which is a contradiction. Hence, we have the proof to the
theorem.

When q is even, there is a class of translation planes of order q3 that admits two
groups isomorphic to GL(2,q) both of which contain a group � isomorphic to SL(2,q)
where the involutions are elations. One of these groups is �×K∗, where K∗ is the
kernel homology group of order q−1 and K is the kernel of order q which commutes
with �. The other group is defined as follows:

〈[
α β
δ γ

]
∀α,β,δ,γ ∈ F 4 αγ−βδ≠ 0

〉
, (3.2)

where F is a field isomorphic to K. The components are x = 0, y = xα for all α in
F and the images of y = xT under the standard action of the above group where
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αT = Tασ , σ is an automorphism of F . Note that the group elements when β= σ = 0
and γ =ασ define the stabilizer of y = xT . We note that the group K∗ does not leave
the subplanes of the elation net invariant whereas the group defined above does leave
every subplane invariant.

Hence, it is possible to have a group which is a (q+1,q3−q)-transitive group which
leaves a subplane of order q invariant and also a (q+1,q3−q)-transitive group which
does not leave a subplane of order q invariant. However, in either case, there is a
subplane of order q within the orbit of length q+1 and there is a subgroup which
leaves the subplane invariant and induces SL(2,q) on the subplane.

Also, when SL(2,q) is generated by elations, the elation net is a regulus net and
hence there are 1+q+q2 Desarguesian subplanes incident with the zero vector. In
general, the subplane structure is not known when Sz(

√q) acts.

Theorem 3.4. Letπ be a translation plane of order q3 that admits Sz(
√q) generated

by elations.
Then there is a net � of degree q+1 containing either 1,2,3,√q+1 or 1+√q+q

Lüneburg-Tits subplanes incident with the zero vector.

Proof. By Hering [5], there is a Lüneburg-Tits subplane invariant under Sz(
√q).

Suppose there are three such subplanes sharing the same components say πi for
i = 1,2,3 and hence subplanes of �. Let � denote the enveloping algebra of the net
containing the subplanes. Then each subplane πi is an irreducible �-module. Hence,
if π3 nontrivially intersects π1⊕π2, then π3 lies within the direct sum. We note from
Johnson et al. [10] that π1⊕π2 is a net of degree 1+q and order q2 and since there
are at least three (Baer) subplanes of this net, it follows from Theorem 2.1 that there
are 1+|kernel π1| = 1+√q subplanes of this net. Furthermore, as all of these sub-
planes are mutually �-isomorphic by the Krull-Schmidt theorem, they are irreducible
�-modules and hence, by Liebler [11, Lemma 1.2], it follows that the subplanes of the
(sub) net of order q2 are also subplanes of the net �.

Now assume that there are three subplanes of the net such that π1⊕π2⊕π3 = π .
Then assume that there is a fourth subplane π4 which is not contained in the sum
of any two of π1, π2 or π3. Then, by Theorem 3.1, all subplanes are isomorphic �-
submodules and it follows � is faithful on π1. Then, there are exactly 1+√q + q
subplanes of the net � which are of order q and incident with the zero vector.

Theorem 3.5. Let π be a cubic extension translation plane of even order q3 for
q > 4.
Assume that there is a (q+1,q3−q)-transitive groupGwhich does not leave invariant

a subplane of order q.
If there is a subplane π0 of the net of degree q+1 such that some subgroup of G

leaves π0 invariant and induces either SL(2,q) or Sz(
√q) on the subplane then there is

a collineation group isomorphic to SL(2,q) or Sz(
√q)where the involutions are elations.

Furthermore, when T � SL(2,q) is a collineation group, there are exactly 1+q+q2

subplanes incident with the zero vector which are left invariant by the group T and
when T � Sz(

√q) is a collineation group, there are either 1+√q or 1+√q+q subplanes
which are invariant under T .
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Proof. If π0 of order q admits SL(2,q) or Sz(
√q), then it follows from the the-

orem of Lüneburg-Yaqub and Liebler (see Lüneburg [13]) that π0 is Desarguesian or
Lüneburg-Tits and the group acts 2-transitive on the line at infinity of π0.

Let S be a Sylow 2-subgroup of order 2aq. The subplanes of order q sharing the
components ofπ0 are permuted by S and there are t such subplanes where t ≡ 1 mod2
such subplanes incident with the zero vector.

Hence, any Sylow 2-subgroup must leave invariant some subplane π0 on which is
also induced a group isomorphic to either SL(2,q) or Sz(

√q).
The argument of the corresponding previous theorem now applies to finish the

result except for the numbers of subplanes.
If SL(2,q) is a collineation group then since the involutions are elations, the result

follows from Ostrom [14].
If Sz(

√q) is a collineation group either there is an invariant subplane or there are
at least two subplanes in the net. If there are exactly two, then since the group Sz(

√q)
must leave each subplane invariant (as the group is generated by elations), some el-
ement σ interchanges the two subplanes so that σ 2 fixes both subplanes. Let the
order of σ be 2bt, where (2, t) = 1. If b = 0, then as 〈σ 2〉 = 〈σ〉, it follows that σ
fixes both subplanes. Thus, σt has order 2b and is not in Sz(

√q) which cannot occur.
Hence, there are at least three subplanes provided there are two. Recall that we have
a normal subgroup isomorphic to Sz(

√q) and hence a subgroup of order divisible by
(√q+1)/(√q+1,r ), where q = 2r that commutes with Sz(

√q) and thus permutes
the subplanes left invariant by Sz(

√q) which are, in fact, all subplanes of the net of
degree q+1.

Let π0 and π1 denote two of the subplanes and consider the subspace π0 ⊕π1.
Assume that all three subplanes incident with the zero vector are in π0⊕π1. Then
there are exactly 1+√q subplanes as the kernel of each subplane is isomorphic to
GF(√q). If this is the full set of such subplanes, there is an element g of order dividing
(√q+1)/(√q+1,r )which permutes this set of subplanes. If g fixes a subplaneπ1 then
as the Sylow 2-subgroups fix exactly

√q points on each line ofπ1, it follows that g fixes
π1 pointwise. But, then g would have to fix an additional subplane pointwise which
cannot occur. If not all subplanes are within the direct sum of any two then consider
that π2 is not in π0⊕π1 so that π =π0⊕π1⊕π2. Since all subplanes are isomorphic
and have kernel GF(√q), there is a collineation group of the direct sum isomorphic
to GL(3,√q) that fixes each component of the net of degree q+1. Furthermore the
element g fixes at most one subplane of the net so there are at least (√q+1)/(√q+
1,r ). Wemay assume by previous results that

√q > 8, we have (√q+1)/(√q+1,r ) > 3.
Thus, the previous result implies that there are exactly 1+√q+√q2 subplanes incident
with the zero vector.

4. Solvable extensions. We may complete the problem on solvable extensions for
even order as follows.

Corollary 4.1. Let π be a translation plane of even order qn which is a solvable
extension of a flag-transitive plane of order q. Then we have one of the following:

(1) q = 2 or 4 or
(2) π is Hall.
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Proof. Apply the main results of Hiramine, Jha and Johnson mentioned in the
introduction noting that when n= 3 and q > 4 then the group must be non-solvable.

We note that there are examples of solvable n-dimensional extensions which are
not Hall when (q,n)∈ {(2,2),(2,3),(2,4),(2,5),(4,3)}.

5. Cubic chains. We have noticed that there are chains of cubic extensions. In this
section, we indicate the extent of such chains.

Theorem 5.1. Let π0 ⊆π1 ⊆π be a set of finite translation planes such that π1 is a
cubic extension of π0 and π is a cubic extension of π1. Assume that the order of π0 is
q so that the orders of π1 and π are q3 and q9, respectively, where q is even.
Then one of the following occur.
(1) The extensions are nonsolvable-nonsolvable and one of the following occur.

(a) Both π0 and π1 are Desarguesian,
(b) π0 and π1 are both Lüneburg-Tits planes of orders q = 26 and 218, respec-

tively.
(2) The extensions are solvable-nonsolvable, π0 is Desarguesian of order q = 4 and

π1 is Lüneburg-Tits or Desarguesian of order 43.

Proof. By Theorem 3.1, we know that the subplane of a cubic extension is Desar-
guesian or Lüneburg-Tits.

First assume that the two extensions are, in order, solvable-solvable. Then, by the
previous section, if q > 4 then π1 is forced to be Hall whereas it is Desarguesian or
Lüneburg-Tits by the above remark.

Assume that q = 4. Then, either both subplanes are Desarguesian or π0 is Desar-
guesian and π1 is Lüneburg-Tits. However, if π1 is Lüneburg-Tits and π is a solvable
extension of a plane of order h = 43 > 4 then this forces π be to Hall and π1 to be
Desarguesian. Hence, if q = 4 then both π0 and π1 are Desarguesian which forces π
to be Hall. However, π is a cubic extension of a Desarguesian plane π1 of order 43

so the group must contain SL(2,43) which is nonsolvable contrary to the assumption.
Hence, q = 4 does not occur.

If q = 2 then π0 and π1 are Desarguesian of orders 2 and 8, respectively and
solvable-solvable forces π to be Hall of order 83 which is a contradiction as 83 is
not square. Hence, solvable-solvable chains do not occur.

Now assume that the extensions are nonsolvable-nonsolvable. If π1 is Lüneburg-
Tits then since a Suzuki group does not contain a nonsolvable SL(2,2t)-subgroup,
it follows that π0 must also be Lüneburg-Tits. By the section on the Lüneburg-Tits
planes, it follows that the order q of π0 must be 26 and there are examples here.

Hence, otherwise π1 must be Desarguesian so that π0 is forced to be Desarguesian.
Examples include the situation when π is Desarguesian and the groups are SL(2,q)⊆
SL(2,q3).

If the extensions are nonsolvable-solvable then since q3 > 4, it follows that π1

must be Desarguesian and π Hall. Hence, π0 is also Desarguesian. However, we have
seen that all involutions of π are always elations and that SL(2,q3) must always be
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generated from the second extension. Hence, the nonsolvable-solvable situation does
not occur.

Now assume that the extensions are solvable-nonsolvable, in order. If q > 4 again,
π1 is forced to be Hall which cannot be the case. If q = 4, then π0 is Desarguesian and
π1 is either Desarguesian or Lüneburg-Tits. If π1 is Desarguesian then the 2-groups
acting on π0 are cyclic of order 4 and the involutions are elations. Hence, both cases
are possible.
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