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AN ASCOLI THEOREM FOR SEQUENTIAL SPACES
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Abstract. Ascoli theorems characterize “precompact” subsets of the set of morphisms
between two objects of a category in terms of “equicontinuity” and “pointwise precompact-
ness,” with appropriate definitions of precompactness and equicontinuity in the studied
category. An Ascoli theorem is presented for sets of continuous functions from a sequen-
tial space to a uniform space. In our development we make extensive use of the natural
function space structure for sequential spaces induced by continuous convergence and de-
fine appropriate concepts of equicontinuity for sequential spaces. We apply our theorem
in the context of C∗-algebras.
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1. Introduction. Ascoli theorems characterize “precompact” subsets of the set of

morphisms between two objects of a category in terms of “equicontinuity” and “point-

wise precompactness,” with appropriate definitions of precompactness and equicon-

tinuity in the studied category. Such general theorems are inspired by the classical

Ascoli theorem, proved by G. Ascoli (and independently by C. Arzelà) in the 19th

century (see [3, 4]). It characterizes compactness of sets of continuous real-valued

functions on the interval [0,1] with respect to the topology of uniform convergence.

Since then, many related theorems have been proved, for example, characterizing

compactness of sets of continuous functions from a topological to a uniform space

(see [6]), of uniformly continuous functions from a merotopic to a uniform space (see

[5]) of continuous functions between topological spaces (see [14, 17]). As was pointed

out by Wyler in [24], it is clear that the setting for Ascoli theorems requires natu-

ral function space structures; the existence of nice function spaces is guaranteed by

Cartesian closedness of the considered topological construct. Around 1980, Dubuc

[8] and Gray [12] both proposed a general theory for Ascoli theorems in a categori-

cal setting, but as neither of them seems to be entirely satisfactory, Wyler suggested

that more examples should be constructed in order to guide the general theory. Wyler

himself developed new examples of Ascoli theorems for sets of continuous functions

between limit spaces and of uniformly continuous functions from a uniform conver-

gence space to a pseudo-uniform space (see [24]).

In this paper, we present another setting for an Ascoli theorem: we choose the

construct L of sequential spaces. Sequential spaces were already introduced at the

beginning of the century by Fréchet (see [9, 10]) and Urysohn (see [2, 23]), even before

topological spaces were axiomatized. Since then they have extensively been used as

a tool in topology and analysis. Since the 60s sequential structures have been inves-

tigated from a categorical point of view (for categorical background, we refer to [1]);
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in particular, it was shown that the construct L is Cartesian closed. The natural func-

tion spaces available in the setting of L are extensively used in our development of the

theory. We define appropriate concepts of equicontinuity and even continuity in L, and
study the relations between these concepts. Further, we investigate relations between

the different sequential function space structures (pointwise convergence, continu-

ous convergence, and uniform convergence) and look at the induced structures on

equicontinuous and evenly continuous sets. In this way, we obtain two versions of an

Ascoli theorem for sets of continuous functions from an L-space to a uniform space.

Finally, we apply our theorem in an example in the context of �∗-algebras.
The setN is the set of nonnegative integers andMONs the set of all strictly increasing

mappings from N to N. If ξ is a sequence in a set X, we often write ξn for ξ(n), and
the sequence itself is denoted by 〈ξn〉. The Fréchet-filter of ξ on X is denoted by �(ξ),
that is, the filter generated by the sets {ξn; n ≥m} with m ∈ N. A sequence of ξ is

always of the form ξ◦s, with s ∈MONs . If x ∈X, ẋ is the constant sequence x in X.
A convergence on the set X is a set �⊂XN×X satisfying

{
(ẋ,x); x ∈X}⊂�,

(ξ,x)∈� �⇒∀s ∈MONs : (ξ◦s,x)∈�.
(1.1)

Then (X,�) is called an L-space or sequential (convergence) space. As usual, such a

space will often be denoted by its underlying set only. If (X,�) is an L-space, ξ ∈ XN
and x ∈X, ξ (X,�)

������������������������������������������������������������������������������������������→ x (or ξ X
������������→ x, ξ �

���������→ x or simply ξ→ x) means (ξ,x)∈�; we say that

ξ �-converges to x (or simply X-converges to x or converges to x) and that x is an

�-limit point of ξ. If X and Y are L-spaces, a function f : X → Y is called continuous

in x ∈X if

ξ X
�����������������������������→ x �⇒ f ◦ξ Y

����������������������������→ f(x), (1.2)

and continuous if it is continuous at each point of X. The set of all continuous func-
tions from X to Y is denoted by C(X,Y); it is a subset of F(X,Y), the set of all func-
tions from the set X to the set Y . The construct of all L-spaces and continuous maps

as morphisms is denoted by L. It is a well-fibred topological construct. A source

(
fi : (X,�) �→

(
Xi,�i

))
i∈I (1.3)

in L is initial if and only if

ξ �
���������������������������→ x⇐⇒∀i∈ I : fi ◦ξ �i��������������������������������������������→ fi(x). (1.4)

Often, we will work in L∗, the bireflective subconstruct of Lwith as objects all L-spaces
(X,�) satisfying the Urysohn-axiom:

∀ξ ∈XN,∀x ∈X :
(
∀s ∈MONs ,∃t ∈MONs ,ξ◦s ◦t X

�����������������������������→ x
)
�⇒ ξ X

�����������������������������→ x (1.5)

(� is then called an L∗-structure on X). Objects of L∗ are called L∗-spaces or Urysohn
sequential (convergence) spaces. For example, if (X,�) is a uniform space, with � a

base for �, an L∗-structure on X is defined by

ξ �→ x⇐⇒∀B ∈�, ∃k∈N,∀n≥ k,(x,ξn
)∈ B (1.6)
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(it is the convergence of sequences in the topology on X induced by �, and it is

independent of the choice of the base �). In the following, if a uniform space (X,�)
is considered as an L∗-space, X will always be endowed with the above-mentioned

L∗-structure.
If (X,�) is an L-space, a pretopological structure P(�) on X is defined (see [15]) by

the closure-operator

�(X) �→�(X) :A �→ {x ∈X; ∃ξ ∈AN, ξ �→ x}. (1.7)

For a subset A of an L-space (X,�), cl�A (or simply clA) always means the closure of

A in the pretopological space (X,P(�)) and A is called closed in (X,�) if A is closed

in (X,P(�)). For x ∈X,��(x) (or �(x)) is the neighborhood filter of x in (X,P(�)). A
subset D of an L-space (X,�) is called dense if it is dense in (X,P(�)), that is, if each
point in X is a limit point of a sequence in D. An L-space (X,�) is called separable

if there is a countable dense subset in (X,�), that is, if (X,P(�)) is separable. A

neighborhood covering system (or shortly ncs) of an L-space (X,�) is a neighborhood
covering system of the pretopological space (X,P(�)), that is, a set σ of subsets of

X that contain a neighborhood of each point of X.
A bornology (see [13]) of a set X is a subset α of �(X) with
(i) A∈α, A′ ⊂A⇒A′ ∈α,
(ii) finite unions of sets in α are in α,
(iii) all finite subsets of X are in α.

A set with a bornology is called a bornological set. Bornological sets are objects of

a topological construct Born. A morphism f : (X,α) → (X,β) in Born is a mapping

f :X → Y with f(α)⊂ β.

2. Compactness and precompactness for L-spaces. An L-space X is called com-

pact if each sequence in X has a convergent subsequence. If A is a subset of X, then A
is called compact if the subspace A of X is a compact L-space, that is, if each sequence
in A has a subsequence that converges in X to a point of A.

Proposition 2.1. If X is an L-space, ξ a sequence in X that converges to x ∈ X,
then ξ(N)∪{x} is compact in X.

We now define the concept of precompactness in L which, according to Wyler (see

[24]), should be a functor L→ Born preserving the underlying sets and mappings.

Definition 2.2. A subset A of an L-space is called precompact if each sequence in

A has a subsequence that converges to a point of X.

Evidently, compact subsets of an L-space are precompact. It is easily seen that a

subset of a precompact subset of an L-space still is precompact, that all finite subsets

of an L-space are precompact and that the union of a finite number of precompact

subsets again is precompact. Also we have that, if f :X → Y is a continuous function

between L-spaces, the image f(A) by f of a precompact subsetA ofX is precompact in

Y . Thus precompact subsets define a functor Pr : L→ Born, which preserves underlying

sets and mappings. We can use Example 5.3 in [22] to show that Pr does not preserve

products.
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3. Uniformizable, regular, and R0 spaces. The following definitions are inspired

by the concepts of R0-limit spaces in [21] and uniformizable limit spaces in [24].

Definition 3.1. An L-space X is called an R0-space if it satisfies the condition

ξ X
�����������������������������→ x, ẋ X

�����������������������������→y �⇒ ξ X
�����������������������������→y, (3.1)

and it is called uniformizable if it satisfies

ξ X
�����������������������������→ x, η X

�����������������������������→ x, η X
�����������������������������→y �⇒ ξ X

�����������������������������→y. (3.2)

Uniformizable spaces clearly are R0-spaces. The full subcategories of Lwith as objects
all R0-spaces (resp., all uniformizable spaces) are bireflective in L.

In [11] a notion of regularity for L-spaces is defined. We formulate this definition

here in the context of L∗-spaces.

Definition 3.2. Let X be an L∗-space. Take ξ ∈ XN, x ∈ X, and 〈Ξn〉 ∈ (XN)N. We

say that 〈Ξn〉 links ξ and x if for each k ∈ N, the sequence Ξk is X-converging to ξk
and for each f ∈N, the sequence 〈Ξn(f(n))〉 is X-converging to x; in this case ξ and
x are said to be linked.

Definition 3.3. An L∗-space X is called regular if ξ is X-converging to x if and

only if ξ and x are linked, for all ξ ∈XN and x ∈X.

4. Function spaces in L. We first introduce some L-structures on function spaces.

(1) If X is a set and Y is an L-space, the L-structure π of pointwise convergence on

F(X,Y) is the product structure in L on F(X,Y), that is, for a sequence 〈fn〉 in F(X,Y)
and f ∈ F(X,Y), we have

〈
fn
〉 π
�������������������������������→ f ⇐⇒∀x ∈X :

〈
fn(x)

〉 π
�������������������������������→ f(x). (4.1)

If Y is an L∗-space, then so is (F(X,Y),π).
(2) If X and Y are L-spaces, the L-structure Γ of continuous convergence on C(X,Y)

is defined by

〈
fn
〉 Γ
�������������������→ f ⇐⇒∀x ∈X, ∀ξ ∈XN,

∀s ∈MONs :
(
ξ X
�����������������������������→ x �⇒ 〈fs(n)

(
ξn
)〉 Y
����������������������������→ f(x)

)
.

(4.2)

If X is an L∗-space, then

〈
fn
〉 Γ
�������������������→ f ⇐⇒∀x ∈X, ∀ξ ∈XN :

(
ξ X
�����������������������������→ x �⇒ 〈fs

(
ξn
)〉 Y
����������������������������→ f(x)

)
. (4.3)

Again, if Y is an L∗-space, then so is (C(X,Y),Γ).
(3) If X is a set and (Y ,�) is a uniform space with � a base for �, and if A ⊂ X,

the sets {
(f ,g)∈ F(X,Y)×F(X,Y);∀x ∈A :

(
f(x),g(x)

)∈ B} (4.4)

for B ∈ � form a base for a uniformity on F(X,Y), which induces an L∗-structure
on F(X,Y). It does not depend on the choice of the base �. We call it the sequential
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structure of uniform convergence on A, and denote it by sX,Y�,A , or simply s�,A. For a

sequence 〈fn〉 in F(X,Y) and f ∈ F(X,Y), we have
〈
fn
〉 s�,A
���������������������������������������������������������������������������������→ f ⇐⇒∀B ∈�, ∃k∈N, ∀n≥ k, ∀x ∈A, (f(x),fn(x)

)∈ B. (4.5)

Remark 4.1. Note that

A⊂A′ ⊂X �⇒ s�,A′ ⊂ s�,A. (4.6)

If A = X, we write s� instead of s�,A, and call s� the sequential structure of uni-

form convergence. If now σ ⊂ �(X), we define sX,Yσ (or sσ ) as the supremum in L∗

of all the structures s�,A on F(X,Y), with A ∈ σ ; sσ is called the structure of uni-

form convergence on the sets of σ . For a sequence 〈fn〉 in F(X,Y) and f ∈ F(X,Y),
we have 〈

fn
〉 sσ�����������������������������������������������→ f ⇐⇒∀A∈ σ :

〈
fn
〉 s�,A
���������������������������������������������������������������������������������→ f . (4.7)

If for A⊂X, rA is the restriction map

F(X,Y) �→ F(A,Y) : f �→ f |A, (4.8)

it is easily seen that
(
rA :

(
F(X,Y),sX,Yσ

)
�→
(
F(A,Y),sA,Y�

))
A∈σ (4.9)

is an initial source in L∗. Even more, each map

rA :
(
F(X,Y),sX,Y�,A

)
�→
(
F(A,Y),sA,Y�

)
(4.10)

is initial. Finally, remark that, if σ = {A} with A ⊂ X, then sσ = s�,A, and that, if

σ = {{x}; x ∈X}, then sσ =π .
For the above-defined function convergences π , Γ , and so forth, we use the same

symbols for their induced convergences on subsets of their definition sets, that is, if X
and Y both carry L-structures, we use π for the subspace structure of the sequential

structure of pointwise convergence on the subset C(X,Y) of F(X,Y).
We recall that L and L∗ are Cartesian closed topological constructs and that,

for L-spaces X and Y , (C(X,Y),Γ) is the corresponding power-object (see [1]):

f : X×Z → Y is continuous if and only if f∗ : Z → (C(X,Y),Γ) is continuous where
f∗(z)(x)= f(x,z).
We now investigate limits of sequences of continuous functions in the sequential

structures of uniform convergence.

Proposition 4.2. Let X be an L-space, (Y ,�) a uniform space, x ∈X andA∈�(x).
If 〈fn〉 is a sequence in F(X,Y) of continuous functions inx, f ∈F(X,Y), and 〈fn〉 s�,A

����������������������������������������������������������������→ f ,
then f is also continuous in x.

Corollary 4.3. Let X be an L-space and let (Y ,�) be a uniform space. If σ is an

ncs of X, then C(X,Y) is closed in (F(X,Y),sσ ).

In the following theorem we discuss some relations between the different function

space structures on F(X,Y).
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Theorem 4.4. (a) If X and Y are L-spaces, Γ ⊂π on C(X,Y).
(b) If X is a set and (Y ,�) is a uniform space, sσ ⊂π on F(X,Y), for all covers σ of

X.
(c) If X is a set and (Y ,�) is a uniform space, s� ⊂ sσ on F(X,Y), for all σ ⊂�(X).
(d) If X is a set and (Y ,�) is a uniform space, s� ⊂π on F(X,Y).
(e) If X is an L-space and (Y ,�) is a uniform space, s� ⊂ Γ on C(X,Y).
(f) If X is an L-space and (Y ,�) is a uniform space, sσ ⊂ Γ on C(X,Y), for all neigh-

borhood covering systems σ of X.
(g) If X is a compact L-space and (Y ,�) is a uniform space, s� = Γ on C(X,Y).
(h) If X is an L-space and (Y ,�) is a uniform space, sσ = Γ on C(X,Y), if σ is the

collection of all compact subsets of X.

5. Even continuity. In [14], Kelley defined even continuous mappings between

topological spaces, and Poppe [19] generalized this notion to sets of continuous map-

pings between limit spaces. The following is straightforward transcription of these

definitions to L-spaces.

Definition 5.1. If X and Y are L-spaces, a subset of C(X,Y) is called evenly con-

tinuous if for all x ∈ X, y ∈ Y , ξ ∈ XN, and 〈fn〉 ∈ HN, the conditions ξ X
������������→ x and

〈fn(x)〉 Y
����������→y imply 〈fn(ξn)〉 Y

����������→y .
It is easily seen that a subset of an evenly continuous set in C(X,Y) is still evenly

continuous and that a finite union of evenly continuous subsets is still evenly contin-

uous. This does not mean that the evenly continuous subsets of C(X,Y) always form
a bornology on C(X,Y); the next proposition clarifies when they do.

Proposition 5.2. The following statements are equivalent:

(a) The L-space Y is an R0-space.
(b) For all L-spaces X the evenly continuous subsets of C(X,Y) form a bornology on

C(X,Y).

Proposition 5.3. For a fixed R0-space Y , even continuity defines a functor

ECY : Lop→ Born, with ECY (X)= (C(X,Y),{evenly continuous subsets}).

6. Equicontinuity. In this section, X is an L-space and (Y ,�) is a uniform space.

Definition 6.1. A subset H of C(X,Y) is called equicontinuous at a point x of X
if for all U ∈� and all sequences ξ X-converging to x,

∃k∈N, ∀n≥ k, ∀f ∈H :
(
f(x),f

(
ξn
))∈U. (6.1)

The subset H is called equicontinuous in A ⊂ X if H is equicontinuous at each point

x of A, and H is called equicontinuous if H is equicontinuous in X.

Proposition 6.2. The subsets of C(X,Y) that are equicontinuous in x form a

bornology on C(X,Y).

Proposition 6.3. An equicontinuous subset of C(X,Y) is evenly continuous.
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Remark 6.4. To see that an evenly subset of C(X,Y) need not be equicontinuous,

consider the following example, based on an example of Poppe in [20]. Let X be the L∗-
space with the underlying set Q∩[0,1] and with the sequential structure induced by

the usual metric onQ. Further, let Y be the uniform subspace of R with as underlying

set all strictly positive rational numbers. Then take an irrational number i0 ∈ [0,1]
and a strictly decreasing sequence 〈rn〉 of rationals in [0,1], converging in R to i0.
Now for all n∈N define a continuous function

fn :X �→ Y : x �→ rn+nx. (6.2)

Finally put H = {fn; n∈N}.
We first show that H is not equicontinuous at 0. If ξ is the sequence in X with

ξn = 1/n for n∈N0 and ξ0 = 0, then ξ→ x. For n∈N0 we now have
∣∣fn

(
ξn
)−fn(0)

∣∣= 1. (6.3)

To prove that H is evenly continuous, take x ∈ X, y ∈ Y , ξ ∈ XN, and a sequence

〈fs(n)〉 in H (s is a function N → N) with ξ X������������→x and 〈fs(n)(x)〉 Y����������→y . If x = 0, the con-

dition 〈rs(n)〉 Y����������→y clearly implies that the set {rs(n); n ∈ N} is finite, and so that also

{fs(n); n∈N} is finite. If x > 0, we have for all n such that s(n)≥ (y+1−i0)/x
fs(n)(x)= rs(n)+s(n)x > i0+y+1−i0 =y+1, (6.4)

and so the set {fs(n); n ∈ N} is finite, otherwise the sequence 〈fs(n)(x)〉 has an

infinite number of terms greater than y + 1, which contradicts the convergence

〈fs(n)(x)〉 Y
����������→y .

So in each case the set {fs(n); n∈N} is finite, and so evenly continuous. This means

that 〈fs(n)(ξn)〉 Y����������→y . So we have proved that H is evenly continuous.

Note that

H(0)= {rn; n∈N
}

(6.5)

is not precompact in Y . This is not surprising, for the following proposition shows

that H would be equicontinuous in 0 if H(0) were to be precompact in Y , since H is

evenly continuous.

Proposition 6.5. Let H ⊂ C(X,Y) and x ∈ X. If H is evenly continuous and H(x)
is precompact in Y , then H is equicontinuous in x.

Proof. Suppose H is not equicontinuous in x. Then there exists U ∈ � and a

sequence ξ with ξ X������������→x such that

∀k∈N, ∃n≥ k, ∃f ∈H :
(
f(x),f

(
ξn
)) �∈U. (6.6)

This gives a subsequence ξ◦s(s ∈MONs) and a sequence 〈fn〉 in H with

∀n∈N :
(
fn(x),fn

(
ξs(n)

)) �∈U. (6.7)

Because H(x) is precompact there would exist a subsequence 〈ft(n)〉 of 〈fn〉(t ∈
MONs) such that 〈ft(n)(x)〉 converges in Y to a point y . Now H is evenly continu-

ous and so 〈
ft(n)

(
ξs(t(n))

)〉 Y
����������������������������→y (6.8)
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because ξ◦s ◦t X������������→x. By the last two convergences we can find k∈N with

(
ft(k)(x),ft(k)

(
ξs(t(k))

))∈U (6.9)

yielding a contradiction.

The following proposition reduces equicontinuity of a set of functions to an or-

dinary continuity of a suitable function, as one can do in the context of topological

spaces [14]. First we need a few notations and remarks.

For x ∈X, x̂ is the evaluation map in x

x̂ : F(X,Y) �→ Y : f �→ f(x). (6.10)

If H is endowed with the structure π of pointwise convergence, it is easily seen that

all functions x̂|H :H → Y are continuous. So we have a function

λH :X �→ C(H,Y) : x �→ x̂|H. (6.11)

Proposition 6.6. If H ⊂ C(X,Y) and x ∈X, the following are equivalent:

(a) H is equicontinuous in x,
(b) λH :X → (C(H,Y),SH,Y� ) : x→ x̂|H is continuous in x.

Proof. First remark that for a sequence ξ in X, we have

λH ◦ξ sH,Y�����������������������������������������������������������������������������������������→ λH(x)⇐⇒
〈
ξ̂n|H

〉 sH,Y�����������������������������������������������������������������������������������������→ x̂|H

⇐⇒∀U ∈�,∃k∈N,∀n≥ k,∀f ∈H :
(
x̂|H(f), ξ̂n|H(f)

)∈U

⇐⇒∀U ∈�,∃k∈N,∀n≥ k,∀f ∈H :
(
f(x),f

(
ξn
))∈U.

(6.12)

Now λH is continuous in x if and only if, for all sequences ξ converging to x in X, we
have

λH ◦ξ sH,Y�����������������������������������������������������������������������������������������→ λH(x), (6.13)

and with the equivalences above, this is precisely the condition for H to be equicon-

tinuous in x.

7. Convergence on evenly continuous and equicontinuous sets

Proposition 7.1. Let X and Y be L-spaces. If 〈fn〉 is a sequence in C(X,Y) such

that {fn; n∈N} is evenly continuous, and if f ∈ C(X,Y), then we have

〈
fn
〉 π
�������������������������������→ f ⇐⇒ 〈fn

〉 Γ
�������������������→ f . (7.1)

Corollary 7.2. If X and Y are L-spaces, then the closures in C(X,Y) of an evenly

continuous subset of C(X,Y) for the sequential structures π and Γ coincide.

Proposition 7.3. Let X and Y be L-spaces with Y a regular L∗-space. IfH ⊂ C(X,Y)
is evenly continuous and f ∈ F(X,Y), then

f ∈ clπ H �⇒ f ∈ C(X,Y). (7.2)



AN ASCOLI THEOREM FOR SEQUENTIAL SPACES 311

Proof. Take x ∈ X, ξ ∈ XN with ξ X������������→x and let 〈fn〉 ∈HN be a sequence in H with

〈fn〉 π��������������→f . For all n∈N, we put
Ξn :N �→ Y : k �→ fk+n+1

(
ξn
)
. (7.3)

We now prove that 〈Ξ〉 links f ◦ξ and f(x) in Y .
For all n∈N, Ξn is a subsequence of 〈fk(ξn)〉k, and

〈
fk
(
ξn
)〉
k
Y
����������������������������→ f (ξn

)
, (7.4)

so we have Ξn
Y
����������→ f(ξn).

Take a function F ∈NN. Put, for all n∈N, T(n)= Ξn(F(n)), so that T is a sequence

in Y . If s ∈MONs , we inductively define t :N→N as follows:

t(0)= 0, ∀n≥ 1 : t(n)= F(s(t(n−1)))+s(t(n−1))+1. (7.5)

Then clearly t also is a strictly increasing function N → N. Now 〈ft(n+1)〉 is a subse-

quence of 〈fn〉 and 〈ft(n+1)〉 π
��������������→ f , and
〈
ft(n+1)(x)

〉 Y
����������������������������→ f(x). (7.6)

Further, ξ◦s ◦t X
������������→ x and so

〈
ft(n+1)

(
ξs(t(n))

)〉 Y
����������������������������→ f(x) (7.7)

is evenly continuous. Now

T ◦s ◦t(n)= Ξs(t(n))
(
F
(
s
(
t(n)

)))

= fF(s(t(n)))+s(t(n))+1
(
ξs(t(n))

)

= ft(n+1)
(
ξs(t(n))

)
,

(7.8)

and so T ◦s◦t Y
����������→ f(x). This proves T Y

����������→ f(x). Regularity of Y now gives f ◦ξ Y
����������→ f(x),

and so f is continuous.

Proposition 7.4. Let X be a compact L-space, and (Y ,�) a uniform space. If {fn;
n∈N} is an evenly continuous subset of C(X,Y), f ∈ F(X,Y), then

〈
fn
〉 π
�������������������������������→ f ⇐⇒ f ∈ C(X,Y), 〈

fn
〉 s���������������������������������������������→ f . (7.9)

Proof. If 〈fn〉 π��������������→f , then f is continuous by Proposition 7.3. Further, 〈fn〉 Γ
�→ f by

Proposition 7.1 and finally 〈fn〉 s�����������������������������→ f by Theorem 4.4.

Corollary 7.5. If X is a compact L-space, and (Y ,�) is a uniform space, then the

closures F(X,Y) of an evenly continuous subset of C(X,Y) in the sequential structures

π and s� coincide.

Proposition 7.6. LetX be an L-space, x ∈X, and let (Y ,�) be a uniform space. IfH
is a subset ofC(X,Y), thenH is equicontinuous inx if and only if clπ H is equicontinuous

in x.

8. An extension theorem. In this section, X is an L-space and (Y ,�) is a uniform
space. Recall that ξ ∈ YN is a Cauchy-sequence if and only if

∀U ∈�, ∃n0 ∈N : p,q ≥n0 �⇒
(
ξp,ξq

)∈U. (8.1)
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Proposition 8.1. Let ξ X
������������→x and let 〈fn〉 be a sequence in C(X,Y) with {fn; n∈N}

equicontinuous in x. If for all k ∈ N, 〈fn(ξk)〉n is a Cauchy-sequence in (Y ,�), then
〈fn(x)〉 also is a Cauchy-sequence in (Y ,�).

Proof. Take U ∈�. Choose a symmetric V ∈� with V 3 ⊂ U . Equicontinuity in x
gives a k0 ∈N with

∀j ≥ k0,∀n∈N :
(
fn(x),fn

(
ξj
))∈ V. (8.2)

Because now 〈fn(ξk0)〉n is a Cauchy-sequence, we have k∈N with

∀m,n≥ k : (fm
(
ξk0
))∈ V. (8.3)

Then we have form,n≥ k
(
fm(x),fn(x)

)∈ V 3 ⊂U. (8.4)

This proves the proposition.

Corollary 8.2. Let D be a dense subset of X, 〈fn〉 a sequence in C(X,Y) with

H = {fn; n∈N} equicontinuous. Suppose that H(x) is precompact in Y for all x ∈ X.
If, for all d ∈ D, 〈fn(d)〉 is a Cauchy-sequence in Y , then 〈fn(x)〉 is a convergent

sequence in Y for all x ∈X.
Theorem 8.3. Suppose D is a dense subset of X, 〈fn〉 a sequence in C(X,Y) with

H = {fn; n∈N} equicontinuous and H(x) precompact in Y for all x ∈X. If f :D→ Y
is a function with

∀d∈D :
〈
fn(d)

〉
�→ f(d), (8.5)

then f has a continuous extension f̃ : X → Y with 〈fn〉 Γ
�������������������→ f̃ .

Proof. This theorem is an immediate consequence of the previous proposition.

9. An Ascoli theorem

Proposition 9.1. Let X and Y be L-spaces with Y an L∗-space, which is R0. If H is

precompact in (C(X,Y),Γ), then H is evenly continuous.

Proof. Take x∈ X, y∈ Y , ξ∈ XN, and 〈fn〉∈HN with ξ X������������→x and 〈fn(X)〉 Y����������→y . If
s ∈MONs , then 〈fs(n)〉 has a Γ -convergent subsequence 〈fs(t(n))〉 Γ�→f , with f ∈ C(X,Y)
and t ∈MONs . Then, because ξ◦s ◦t X

������������→ x, we have
〈
fs(t(n))

(
ξs(t(n))

)〉 Y
����������������������������→ f(x). (9.1)

Furthermore, 〈
fs(t(n))(x)

〉 Y
����������������������������→y, 〈

fs(t(n))(x)
〉 Y
����������������������������→ f(x). (9.2)

So, because Y is R0, 〈
fs(t(n))

(
ξs(t(n))

)〉 Y
����������������������������→y. (9.3)

This proves 〈
fn
(
ξn
)〉 Y
����������������������������→y (9.4)

because Y is an L∗-space.
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Theorem 9.2. Let X and Y be L-spaces with Y an L∗-space, which is R0. If H is

precompact in (C(X,Y),Γ), then H is evenly continuous and for all x ∈ X, H(x) is

precompact in Y .

Proof. The proof follows from Proposition 9.1 and the continuity of

x̂ :
(
C(X,Y),Γ

)
�→ Y , (9.5)

and H(x)= x̂(H).
Theorem 9.3. Let X be an L-space and (Y ,�) a uniform space. If H is precompact

in (C(X,Y),Γ), then H is equicontinuous and for all x ∈ X, H(x) is precompact in Y .
Further, if X is a separable L-space, these two conditions are also sufficient for H to be

precompact in (C(X,Y)Γ).

Proof. The first part of the theorem follows from Theorem 9.2 and Proposition

6.5. For the second part, suppose H is equicontinuous and H(x) is precompact in

Y for all x ∈ X, and let D = {dn; n ∈ N} be a dense subset of X. Take a sequence

〈fn〉 in H. Because 〈fn(d0)〉 is a sequence in H(d0), it has a convergent subsequence
〈fs0(n)(d0)〉 (s0 ∈ MONs); denote the limit point of this subsequence by f(d0). Now
suppose, by induction, that sk ∈MONs and

〈
fsk(n)

(
dk
)〉
n

Y
����������������������������→ f (dk

)
. (9.6)

Then 〈fsk(n)(dk+1)〉 has a convergent subsequence 〈fsk◦s(n)(dk+1)〉. Put sk+1 = sk ◦ s
and denote by f(dk+1) a limit point of 〈fsk◦s(n)(dk+1)〉. This defines a function

f :D→ Y . Now for all k∈N there is a t ∈MONs such that for all n≥ k,
fsn(n)

(
dk
)= fsk◦t(n)

(
dk
)
. (9.7)

This means that 〈fsn(n)(dk)〉n≥k is a subsequence of 〈fsk(n)(dk)〉, and thus

〈
fsn(n)

(
dk
)〉 Y
����������������������������→ f (dk

)
. (9.8)

So 〈fsn(n)〉 is a subsequence of 〈fn〉 with 〈fsn(n)(d)〉 Y
����������→ f(d) for all d∈D. The exten-

sion theorem (Theorem 8.3) then gives a continuous extension f̃ : X → Y of f with

〈fsn(n)〉 Γ
�→ f̃ . This proves that H is precompact in (C(X,Y),Γ).

Corollary 9.4. Let X be a compact and separable L-space and (Y ,�) a uniform

space. Then a subset H of C(X,Y) is precompact in (C(X,Y),s�) if and only if H is

equicontinuous and for all x ∈X, H(x) is precompact in Y .

Proof. The proof follows from Theorem 9.3 and Theorem 4.4(g).

We can easily rewrite Theorem 9.3 in another form. Therefore, if F is a set, X and

Y are L-spaces, a map Φ : X×F → Y is called a dual map if each function Φf : X → Y :

x → Φ(x,f ) for f ∈ F belongs to C(X,Y). For such a dual map, we put ΓΦ, the initial
L-structure, on F for the map F → C(X,Y) : f → Φf . If Y is an L∗-space, Γ∗-space, ΓΦ is
an L∗-structure on F . Finally, for H ⊂ F , we set ΦH = {Φf ; f ∈H}.

Theorem 9.5. Let F be a set,X an L-space, (Y ,�) a uniform space, and Φ :X×F → Y
a dual map. If H is precompact in (F,ΓΦ), then ΦH is equicontinuous in C(X,Y) and for
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all x ∈ X, ΦH(x) is precompact in Y . Further, if X is separable and clΓΦ ΦH ⊂ ΦF , then
these two conditions are also sufficient for H to be precompact in (F,ΓΦ).

10. An example. We give an example of an application of our Ascoli theorem in

the context of �∗-algebras. Some experience with the fundamental parts of the theory

of �∗-algebras is needed and can be found in [7, 18]. The example is based on an

application of another Ascoli theorem for “pseudotopological classes” by McKennon

in [16].

Let A be a �∗-algebra, which we may and will regard as a subalgebra of its en-

veloping von Neumann algebra Aν . Let QA = {x ∈ Aν ; ∀a,b ∈ A : a∗xb ∈ A} be

the set of quasi-multipliers of A and SA the set of all states of A (i.e., the set of

all positive linear functionals on A with norm 1). Each linear functional ϕ : A → C
has a unique linear extension ϕν : Aν → C that is continuous for the weak topol-

ogy on Aν , and for x ∈ QA the map x̂ : A′ → C : ϕ → ϕν(x) belongs to the bidual

of A. On SA we place the L∗-structure introduced by the weak∗-topology on A′ rel-
ativized to SA. In this case, we can show that Φ : SA ×QA → C is a dual map. Fur-

thermore, norm-bounded sequences in QA converge in ΓΦ if and only if they con-

verge in the quasi-strict topology on QA, that is, the topology on QA induced by all

semi-norms QA → C : x → ‖a∗xa‖ for a ∈ A. If the C∗-algebra A is separable, then

SA is also separable. And finally, for a norm-bounded subset H of QA, the condi-

tion clΓΦ ΦH ⊂ ΦF is satisfied. So we can apply Theorem 9.5 and get the following

theorem.

Theorem 10.1. If A is a separable �∗-algebra, then for each norm-bounded subset

H of QA the following are equivalent:

(1) H is precompact in the sequential structure induced by the quasi-strict topology

on QA.

(2) {x̂|SA ; x∈H} is equicontinuous in C(SA,C) and for allϕ∈SA the set {ϕν(x); x∈
H} is precompact in C.
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