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Abstract. We prove that a generalized periodic, as well as a generalized Boolean, ring is
either commutative or periodic. We also prove that a generalized Boolean ring with central
idempotents must be nil or commutative. We further consider conditions which imply the
commutativity of a generalized periodic, or a generalized Boolean, ring.
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Throughout, R denotes a ring, N the set of nilpotents, C the center, and E the set

of idempotents of R. A ring R is called periodic if for every x in R, there exist distinct

positive integers m,n such that xm = xn. We now formally state the definitions of a

generalized periodic ring and a generalized Boolean ring.

Definition 1. A ring R is called generalized periodic if for every x in R such that

x ∉ (N∪C), we have xn−xm ∈ (N∩C), for some positive integers m,n of opposite

parity.

Definition 2. A ring R is called generalized Boolean if for every x in R such that

x ∉ (N∪C), there exists an even positive integer n such that x−xn ∈ (N∩C).
Theorem 3. If R is a generalized periodic ring, then R is either commutative or

periodic.

Proof. Let N and C denote the set of nilpotents and the center of R, respectively.
We distinguish three cases.

Case 1 (N ⊆ C). Then x ∉ C implies x ∉ (N ∪C), and hence there exist distinct

positive integers m,n such that xm−xn ∈ N , with n >m. Suppose (xm−xn)k = 0.

Then, as is readily verified,

(
x−xn−m+1)kxk(m−1) = 0, (1)

which, in turn, implies that

(
x−xn−m+1)km = (x−xn−m+1)kxk(m−1)g(x)

= 0,
(2)

where

g(λ)∈ Z[λ]. (3)

We have thus shown that

x−xn−m+1 ∈N, ∀x ∉ C, (n−m+1> 1). (4)
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Recall that, in our present case, we assumed that N ⊆ C , and hence by (4),

x−xn−m+1 ∈ C, ∀x ∉ C, (n−m+1> 1). (5)

Since (5) is trivially satisfied if x ∈ C , we see that

x−xn(x) ∈ C, for some n(x) > 1, where x ∈ R (arbitrary). (6)

Therefore, R is commutative, by a well-known theorem of Herstein [3].

Case 2 (C ⊆ N). Then x ∉ N implies x ∉ (N ∪C), and hence there exist distinct

positive integers m,n such that xn−xm ∈ N , with n > m. Repeating the argument

used to prove (4), we see that

x−xn−m+1 ∈N, ∀x ∉N, (n−m+1> 1). (7)

Since (7) is trivially satisfied for all x ∈N , we conclude that

x−xk(x) ∈N, for some k(x) > 1, where x ∈ R (arbitrary). (8)

By a well-known theorem of Chacron [2], equation (8) implies that R is periodic.

Case 3 (C 	⊆N and N 	⊆ C). In this case, let

z ∈ C\N, u∈N\C. (9)

Equation (9) readily implies that z+u ∉ C and z+u ∉N , and hence (see Definition 1)

(z+u)n−(z+u)m ∈N, for some integers n>m≥ 1. (10)

Since z commutes with the nilpotent element u, (10) implies that

zn−zm+u′ ∈N, where u′ ∈N, u′commutes with z. (11)

Hence zn−zm ∈ N , with n > m ≥ 1. Now, a repetition of the argument used in the

proof of (4) shows that

z−zn−m+1 ∈N, ∀z ∈ C\N, (n−m+1> 1). (12)

Trivially,

x−xk ∈N, ∀x ∈N, ∀k∈ Z+. (13)

Finally, if x ∉ (N∪C), then

xn−xm ∈N, for some integers n>m≥ 1. (14)

Again, repeating the argument used in the proof of (4), we see that

x−xn−m+1 ∈N, ∀x ∉ (N∪C), (n−m+1> 1). (15)

Combining (12), (13), and (15), we conclude that

x−xk(x) ∈N, for some k(x) > 1, where x ∈ R (arbitrary). (16)

Thus, by Chacron’s theorem [2], R is periodic. This completes the proof.
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Corollary 4. If R is a generalized Boolean ring, then R is either commutative or

periodic.

This follows at once, since a generalized Boolean ring is necessarily a generalized

periodic ring (see Definitions 1 and 2).

Before proving the next theorem, we prove the following lemma.

Lemma 5. Let R be a generalized periodic ring. If e is any nonzero central idempotent

in R and a∈N , then ea∈ C .

Proof. The proof is by contradiction. Suppose the lemma is false, and let

η0 ∈N, eη0 ∉ C. (17)

Since e∈ C and η0 ∈N , therefore eη0 is nilpotent. Let

(
eη0

)α ∈ C, ∀α≥α0, α0 minimal. (18)

Since eη0 ∉ C (see (17)), therefore α0 > 1. Let η= (eη0)α0−1. Then,

η= (eη0
)α0−1 ∈N, η ∉ C (by the minimality of α0),

ηk ∈ C, ∀k≥ 2, e∈ C, e2 = e 	= 0, e ∉N.
(19)

Equation (19) implies that e+η ∉ C and e+η ∉N , and hence (see Definition 1)

(
e+η)m′ −(e+η)n′ ∈ C, (20)

wherem′, n′ are of opposite parity. Combining (20) and (19), we see that (keep in mind

that eη= η; see (19)) (
m′ −n′)eη∈ C, (21)

where m′ −n′ is an odd integer. Equation (19) also implies that (−e+η) is not in

(N∪C), so (−e+η)m′′ −(−e+η)n′′ ∈N, (22)

where m′′, n′′ are of opposite parity. Combining (19) and (22), we see that

(−e)m′′ −(−e)n′′ ∈N, (23)

and hence 2e∈N , sincem′′ andn′′ are of opposite parity. Therefore, (2e)γ = 0, γ ∈ Z+,
and thus 2γe= 0, which implies that

2γeη∈ C ; γ ∈ Z+. (24)

Now, combining (21) and (24), keeping in mind that (2γ,m′ −n′) = 1, we see that

eη ∈ C , and hence, by (19), η = eη ∈ C , which contradicts (19). This contradiction

proves the lemma.

As usual, [x,y]= xy−yx denotes the commutator of x and y .

We are now in a position to prove the following theorem.
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Theorem 6. Suppose R is a generalized periodic ring, and suppose that there exists

an element c in C , with c 	= 0, such that

c
[
x,y

]= 0 implies
[
x,y

]= 0, ∀x,y ∈ R. (25)

Then R is commutative.

Proof. We distinguish two cases.

Case 1 (c ∈N). In this case, ck = 0 for some positive integer k, and hence

ck
[
x,y

]= 0, ∀x,y ∈ R. (26)

Combining (25) and (26), we see that

ck
[
x,y

]= 0 �⇒ c
[
ck−1x,y

]= 0 �⇒ [
ck−1x,y

]= 0 �⇒ ck−1
[
x,y

]= 0

�⇒ ··· �⇒ c
[
x,y

]= 0 �⇒ [
x,y

]= 0.
(27)

Thus, ck[x,y]= 0 implies [x,y]= 0, and hence R is commutative.

Case 2 (c ∉ N). In view of Theorem 3, we may assume that R is periodic. This

implies, in particular, that cm is idempotent for some positive integerm. Furthermore,

cm 	= 0 (since c ∉N in our present case). The net result is (since c ∈ C also)

cm = e is a nonzero central idempotent in R. (28)

Let a ∈ N . By Lemma 5 and equation (28), we have ea ∈ C , and hence [ea,x] = 0 for

all x ∈ R, which implies

[
cma,x

]= cm[a,x]= 0, ∀x ∈ R. (29)

The argument used in Case 1 of Theorem 6 shows that

cm[a,x]= 0 implies [a,x]= 0, (30)

and hence (see (29))

[a,x]= 0 ∀x ∈ R, ∀a∈N. (31)

Thus, R is a periodic ring with the property that N ⊆ C . By a well-known theorem of

Herstein [4], it follows that R is commutative, and the theorem is proved.

Corollary 7. Suppose that R is a generalized periodic ring with identity 1. Then,

R is commutative.

Corollary 7 follows at once by taking c = 1 in Theorem 6.

Since a generalized Boolean ring is also a generalized periodic ring, therefore we

have the following corollary.

Corollary 8. A generalized Boolean ring with identity 1 is necessarily commutative.

Another corollary is the following result, proved by the authors in [1].
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Corollary 9. Suppose that R is a generalized periodic ring containing a central

element which is not a zero divisor. Then R is commutative.

This follows at once, since the hypotheses of this corollary imply the hypotheses

of Theorem 6.

Theorem 10. Suppose R is a generalized periodic ring. Suppose, further, that there

exists a nonzero central element c such that

ca= 0 implies a= 0, ∀a∈N. (32)

Then R is commutative.

Proof. In [1], the authors proved the following result:

IfR is a generalized periodic ring, then the nilpotents

N form an ideal and R/N is commutative.
(33)

Let x,y ∈ R. By (33), for all x̄, ȳ in R/N , x̄ȳ = ȳx̄, and hence [x,y] ∈ N . Taking

a= [x,y]∈N in (32), we see that (32) yields

c
[
x,y

]= 0 implies
[
x,y

]= 0, ∀x,y ∈ R. (34)

The theorem now follows at once from Theorem 6.

Theorem 11. A generalized Boolean ring R with central idempotents is necessarily

nil (R =N) or commutative (R = C).
Proof. Since R is also a generalized periodic ring, therefore by Theorem 3, R is

commutative or periodic. If R is commutative, there is nothing to prove. So we may

assume that R is periodic. We now distinguish two cases.

Case 1 (C ⊆N). Recall that, by hypothesis, the set E of idempotents is central, and

hence E ⊆ C ⊆N (in the present case). Thus, E ⊆N , and hence E = {0}. Therefore,

zero is the only idempotent of R. (35)

Let x ∈ R. Since R is periodic, therefore xk is idempotent for some positive integer k,
and hence by (35), xk = 0, which proves that R is nil.

Case 2 (C 	⊆N). Then, for some c ∈ R, we have

c ∈ C, c 	∈N. (36)

Again, since R is periodic, cm is idempotent for some positive integer m. Moreover,

cm 	= 0 (since c 	∈N). The net result is (see (36))

e= cm is a nonzero central idempotent of R. (37)

Now, suppose a∈N . Since 0 	= e∈ C and a∈N , therefore e+a 	∈N . Suppose, for the

moment, that a 	∈ C . Then e+a 	∈ C (since e∈ C), and hence e+a 	∈ (N∪C). Therefore,
by Definition 2,

(e+a)−(e+a)n ∈ (N∩C), for some even integer n≥ 2. (38)
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Since R is also a generalized periodic ring, therefore by Lemma 5 (see (37))

eai ∈ C, ∀i∈ {1, . . . ,n−1}, (0 	= e= e2, e∈ C, a∈N). (39)

Combining (38) and (39), we see that

a−an ∈ C, ∀a∈N\C. (40)

Since (40) is trivially satisfied for a∈ (N∩C), therefore

a−an ∈ C, ∀a∈N, n≥ 2. (41)

We claim that

N ⊆ C. (42)

The proof is by contradiction. Suppose (42) is false. Then, for some a∈ R, we have

a∈N, a 	∈ C. (43)

Since a∈N , there exists a positive integer σ0 such that

aσ ∈ C, ∀σ ≥ σ0, σ0 minimal. (44)

Moreover, since a ∉ C (see (43)), therefore σ0 > 1. Now, applying (41) to the nilpotent

element aσ0−1, we see that

aσ0−1−(aσ0−1)n ∈ C, for some n=n(aσ0−1)≥ 2. (45)

Furthermore, since (σ0−1)n≥ (σ0−1)2≥ σ0 (since σ0 ≥ 2), (44) implies that

(
aσ0−1)n = a(σ0−1)n ∈ C. (46)

Combining (45) and (46), we conclude thataσ0−1 ∈ C , which contradicts theminimality

of σ0 in (44). This contradiction proves (42). Since R is a periodic ring satisfying (42),

therefore, by a well-known theorem of Herstein [4], R is commutative. This completes

the proof.

Corollary 12. A generalized Boolean ring with central idempotents and commut-

ing nilpotents is commutative.

This corollary recovers a result proved by the authors in [1].

Corollary 13. If R is a generalized Boolean ring, and if R is 2-torsion-free, then R
is nil or commutative.

Proof. We claim that all idempotents of R are central. Suppose not, and suppose

e is a noncentral idempotent in R. Then −e ∉ (N∪C), and hence (see Definition 2)

(−e)−(−e)n ∈ C, n even. (47)

Thus, 2e∈ C , and hence [2e,x]= 0 for all x in R. Since R is 2-torsion-free, 2[e,x]= 0

implies [e,x] = 0, and thus e ∈ C , a contradiction. This contradiction proves that

all idempotents of R are central, and hence R is nil or commutative, by Theorem 11.
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Theorem 14. Let R be a generalized Boolean ring in which every finite subring is

either commutative or nil. Then R is either commutative or nil.

Proof. By contradiction. Thus, suppose R is a generalized Boolean ring such that

every finite subring of R is either commutative or nil. Suppose, further, that R is

not commutative and not nil either. By Theorem 11, there must exist a noncentral

idempotent element e in R, and hence e ∉ (C∪N). Thus (see Definition 2), since −e ∉
(C∪N),

(−e)−(−e)n ∈ (N∩C), n even. (48)

This implies that 2e ∈ (N ∩C), and hence (2e)k = 2ke = 0, for some k ∈ Z+. Since
e 	∈ C , we must have the following:

Either ex−exe 	= 0 for some x ∈ R, or x′e−ex′e 	= 0 for some x′ ∈ R. (49)

Suppose u= ex−exe 	= 0. Then,

eu=u 	= 0=ue=u2, (u= ex−exe 	= 0). (50)

Moreover,

2u= [2e,ex]= 0 (since 2e∈ C). (51)

Furthermore, the subring generated by e and u is

〈e,u〉 = {re+su | r , s ∈ Z}. (52)

Since 2ke= 0 and 2u= 0, the subring 〈e,u〉 is finite. Indeed,

〈e,u〉 = {re+su | 1≤ r ≤ 2k, 1≤ s ≤ 2
}
. (53)

On the other hand, if x′e−ex′e 	= 0 for some x′ ∈ R (the only other possibility), then

the subring, 〈e,v〉, generated by e and v = x′e−ex′e is (as is readily verified)

〈e,v〉 = {re+sv | 1≤ r ≤ 2k, 1≤ s ≤ 2
}
. (54)

Again, 〈e,v〉 is a finite subring of R. Hence, in either case, we found a finite subring of

R, which is neither commutative (since e ∉ C), nor nil (since e ∉N), contradicting our

hypothesis. This contradiction proves the theorem.

Remark 15. A careful examination of the proof of Theorem 14 shows that we only

need to assume that “every subring S, with |S| = 2m for some positive integer m, is

commutative or nil” in order for the ground generalized Boolean ring R to be com-

mutative or nil. Indeed, |〈e,u〉| = 2k ·2 = 2k+1, since the representation of any x in

this subring in the form x = re+ su; r ,s ∈ Z, is unique. For, suppose x = re+ su
and x = r ′e+ s′u. Then, (r −r ′)e = (s′ − s)u. Recall that 2u = 0, and ue = 0. Thus,

if s′ −s is even, then (r −r ′)e = 0, and hence re = r ′e, su = s′u. On the other hand,

if s′ − s is odd, then (r − r ′)e = u, and hence (r − r ′)ee = ue = 0. Again, we obtain

re= r ′e, su= s′u.
We conclude with the following examples.



464 H. E. BELL AND A. YAQUB

Example 16. Let

R =






a b c
0 a2 0

0 0 a


 : a,b,c ∈ GF(4)


 . (55)

It is readily verified that the idempotents of R are central and

x−x7 = 0, ∀x ∈ R\(N∪C), (56)

but R is neither nil nor commutative. Hence, Theorem 11 is not true if we drop the

hypothesis that “n is even” in the definition of a generalized Boolean ring.

Example 17. Let

R =






0 a b
0 0 c
0 0 0


 : a,b,c ∈ GF(3)


 . (57)

This example shows that we cannot drop the hypothesis that “N is commutative” in

Corollary 12. (Note that R is not commutative.)

Example 18. Let

R =
{(

0 0

0 0

)
,
(
1 0

1 0

)
,
(
0 1

0 1

)
,
(
1 1

1 1

)
: 0,1∈ GF(2)

}
. (58)

This example shows that we cannot drop the hypothesis that “the idempotents are

central” in Corollary 12. (Note that R is not commutative.) This example also shows

that we cannot drop the hypothesis that “R is 2-torsion-free” in Corollary 13. Note

that, in this ring R, x−x2 = 0 for all x ∈ R\(N∪C). Even more is true. This ring R
also shows that we cannot drop the hypothesis that “1 ∈ R” in Corollary 7, nor the

hypothesis that “1∈ R” in Corollary 8.

Returning to the ring R in Example 16, we see that this ring further shows that we

cannot drop the hypothesis that “m and n are of opposite parity” in the definition of a

generalized periodic ring in connection with Corollary 7, or the hypothesis that “n is

even” in the definition of a generalized Boolean ring as far as Corollary 8 is concerned.

(Recall that x−x7 = 0 for all x ∈ R\(N∪C).)
Example 19. Let S be any noncommutative ring such that S3 = (0). (For example,

we may take S to be the ring of all 3×3 strictly upper triangular matrices over a field

F .) Let R = GF(4)⊕S. It is readily verified that x3 = x6 for all x in R, and hence R is

indeed a generalized periodic ring. Moreover, the only idempotents of R are (0,0) and
(1,0), and thus the idempotents of R are certainly central. Had R been a generalized

Boolean ring, then, by Theorem 11, R would have to be either nil or commutative,

which is certainly false here (recall that S is not commutative). This example shows

that the set of generalized periodic rings is a wider class than that of generalized

Boolean rings, and thus Theorem 11 does not hold for generalized periodic rings.
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