ASYMPTOTIC DECAY OF NONOSCILLATORY SOLUTIONS OF GENERAL NONLINEAR DIFFERENCE EQUATIONS

E. THANDAPANI, S. LOURDU MARIAN, and JOHN R. GRAEF

(Received 10 November 2000)

Abstract. The authors consider the mth order nonlinear difference equations of the form

$$D_m y_n + q_n f(y_{\sigma(n)}) = e_i,$$

where $m \geq 1$, $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$, $a_i^1 > 0$ for $i = 1, 2, \ldots, m - 1$, $a_m^m \equiv 1$, $D_0 y_n = y_n$, $D_i y_n = a_i^n D_{i-1} y_n$ for $i = 1, 2, \ldots, m$, $\sigma(n) \to \infty$ as $n \to \infty$, and $f: \mathbb{R} \to \mathbb{R}$ is continuous with $uf(u) > 0$ for $u \neq 0$. They give sufficient conditions to ensure that all bounded nonoscillatory solutions tend to zero as $n \to \infty$ without assuming that $\sum_{n=0}^{\infty} 1/a_i^n = \infty$, $i = 1, 2, \ldots, m - 1$, $\{q_n\}$ is positive, or $e_n \equiv 0$ as is often required. If $\{q_n\}$ is positive, they prove another such result for all nonoscillatory solutions.

2000 Mathematics Subject Classification. 39A10.

1. Introduction. Consider the mth order nonlinear difference equation

$$D_m y_n + q_n f(y_{\sigma(n)}) = e_i,$$ \hspace{1cm} (1.1)

where $m \geq 1$, $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$, $\{q_n\}$, $\{e_n\}$, and $\{a_1^i\}$, $\{a_2^i\}$, \ldots, $\{a_{m-1}^i\}$ are real sequences, $a_i^s > 0$ for $i = 1, 2, \ldots, m - 1$ and all $n \in \mathbb{N}$, $a_m^m \equiv 1$, $D_0 y_n = y_n$, $D_i y_n = a_i^n D_{i-1} y_n$ for $i = 1, 2, \ldots, m$, $\{\sigma(n)\}$ is a sequence of positive integers with $\sigma(n) \to \infty$ as $n \to \infty$, and $f: \mathbb{R} \to \mathbb{R}$ is continuous with $uf(u) > 0$ for $u \neq 0$. Throughout, we will assume that

$$\rho_i(n) = \sum_{s=n+1}^{\infty} \frac{\rho_{i-1}(s)}{a_i^s}, \hspace{1cm} i = 1, 2, \ldots, m - 1, \rho_0(n) \equiv 1,$$ \hspace{1cm} (1.2)

satisfies

$$\lim_{n \to \infty} \rho_i(n) = 0 \hspace{0.5cm} \text{for} \hspace{0.5cm} i = 1, 2, \ldots, m - 1.$$ \hspace{1cm} (1.3)

Note that condition (1.3) is satisfied if

$$\sum_{n=N}^{\infty} \frac{1}{a_i^n} < \infty \hspace{0.5cm} \text{for each} \hspace{0.5cm} i = 1, 2, \ldots, m - 1.$$ \hspace{1cm} (1.4)

By a solution of (1.1) we mean a nontrivial real sequence $\{y_n\}$ defined for $n \geq N_0 = \min_{n \in \mathbb{N}} \sigma(n)$, $N_0 \in \mathbb{N}$, and satisfying (1.1) for $n \geq N_0$. Such a solution is said to be oscillatory if for every $N \in \mathbb{N}$ there exist $n_1, n_2 \in \mathbb{N}$ with $n_2 > n_1 > N$ and $y_{n_1} y_{n_2} \leq 0$, and it is said to be nonoscillatory otherwise.

An important problem in the study of oscillation theory of difference equations is to determine sufficient conditions for all nonoscillatory solutions or all bounded nonoscillatory solutions to converge to zero as $n \to \infty$. This problem has received a
good deal of attention in the literature, and for recent results of this type, we refer the reader to the monographs of Agarwal [1], Agarwal and Wong [2] as well as the papers of Cheng et al. [3], Graef et al. [4], Graef and Spikes [5, 6], Szmanda [7], Thandapani and Lalli [8], Thandapani and Pandian [9], and Zhang [10]. Most of these results, however, are obtained under the assumptions that ∑_{n=N}^{∞} 1/a_n^i = ∞, i = 1, 2, ..., m − 1, and/or e_n = 0. It is these last two restrictions that provide the motivation for our work here. That is, we do not require that either of these conditions hold in our results below.

Our results are of two types. First, if the sequence \{q_n\} is allowed to oscillate, we provide sufficient conditions for all bounded nonoscillatory solutions of (1.1) to converge to zero as \(n \to \infty \). Second, in the case where \{q_n\} is a nonnegative sequence, we give sufficient conditions for all nonoscillatory solutions of (1.1) to approach zero as \(n \to \infty \). Examples to illustrate our results are also included.

2. Asymptotic decay of nonoscillatory solutions. We begin with a lemma that will be used in the proofs of our main results.

Lemma 2.1. Consider the difference equation

\[
\Delta u_n - \frac{\Delta \rho(n)}{\rho(n)} u_n + \frac{\Delta \rho(n)}{\rho(n)} \phi_n = 0,
\]

where \{\phi_n\} and \{\rho(n)\} are real sequences defined for \(n \geq N \), for some \(N \in \mathbb{N} \), \(\rho(n) > 0 \), \(\Delta \rho(n) < 0 \), and \(\lim_{n \to \infty} \rho(n) = 0 \).

Let \{u_n\} be the solution of (2.1) defined for \(n \geq N \) and satisfying \(u_N = 0 \). Then

\[
\lim_{n \to \infty} \phi_n = \infty (−\infty) \quad \text{implies} \quad \lim_{n \to \infty} u_n = \infty (−\infty).
\]

Proof. The solution \{u_n\} of (2.1) is given by

\[
u_n = -\rho(n) \sum_{s=N}^{n-1} \frac{\Delta \rho(s)}{\rho(s) \rho(s+1)} \phi_s, \quad n \geq N.
\]

If \(\lim_{n \to \infty} \phi_n = \infty (−\infty) \), then clearly

\[
\lim_{n \to \infty} \sum_{s=N}^{n-1} \frac{\Delta \rho(s)}{\rho(s) \rho(s+1)} \phi_s = -\infty (\infty).
\]

Hence, by Stolz’s theorem [1],

\[
\lim_{n \to \infty} u_n = \lim_{n \to \infty} \left| \frac{\Delta \left(-\sum_{s=N}^{n-1} (\Delta \rho(s)/\rho(s) \rho(s+1)) \phi_s \right)}{\Delta \left(1/\rho(n)\right)} \right| = \lim_{n \to \infty} \phi_n = \infty (−\infty),
\]

and this completes the proof of the lemma. □

In our results that follow, we will make use of the notation \(q_n^+ = \max\{q_n, 0\} \) and \(q_n^- = \max\{-q_n, 0\} \).
Theorem 2.2. Assume that

\[\sum_{n=N}^{\infty} \rho_{m-1}(n) q_n = \infty, \]
\[\sum_{n=N}^{\infty} \rho_{m-1}(n) q_n^2 < \infty, \]
\[\sum_{n=N}^{\infty} \rho_{m-1}(n) |e_n| < \infty. \]

Then all bounded nonoscillatory solutions of (1.1) tend to zero as \(n \to \infty. \)

Proof. Let \(\{y_n\} \) be a bounded nonoscillatory solution of (1.1). Without loss of
generality, we may assume that \(y_n > 0 \) and \(y_{\sigma(n)} > 0 \) for \(n \geq N_1 \) for some \(N_1 \in \mathbb{N}. \)
Define

\[G_0(n) = y_n, \quad G_i(n) = a_n^i \Delta G_{i-1}(n), \quad i = 1, 2, \ldots, m-1, \]

and observe that

\[G_i(n) = D_i y_n \quad \text{for} \quad i = 1, 2, \ldots, m-1, \quad \Delta G_{m-1}(n) = D_m y_n. \]

Next, we define the family of sequences

\[u_k(n) = \sum_{s=N_1+1}^{n} \rho_{m-k-1}(s) \Delta G_{m-k-1}(s), \quad k = 0, 1, \ldots, m-1, \]

for \(n \geq N_1 + 1. \)

A summation by parts yields

\[u_{k-1}(n) = \sum_{s=N_1+1}^{n} \rho_{m-k}(s) \Delta G_{m-k}(s) = \rho_{m-k}(n+1) G_{m-k}(n+1) \]

\[- \rho_{m-k}(N_1+1) G_{m-k}(N_1+1) + \sum_{s=N_1+1}^{n} \rho_{m-k-1}(s) \Delta G_{m-k}(s) - \frac{\rho_{m-k}(n+1)}{\Delta \rho_{m-k}(n)} \Delta u_k(n) + \Delta u_k(n) + u_k(n) - 2 \rho_{m-k}(N_1+1) G_{m-k}(N_1+1) \]

\[= - \frac{\rho_{m-k}(n)}{\Delta \rho_{m-k}(n)} \Delta u_k(n) + u_k(n) - 2 \rho_{m-k}(N_1+1) G_{m-k}(N_1+1). \]

(2.12)

This shows that each sequence \(\{u_k(n)\}, \quad k = 0, 1, \ldots, m-1, \) satisfies the difference equation

\[\frac{\rho_{m-k}(n)}{\Delta \rho_{m-k}(n)} \Delta u_k(n) - u_k(n) + \phi_k(n) = 0, \]

which can be written in the form

\[\Delta u_k(n) - \frac{\rho_{m-k}(n)}{\rho_{m-k}(n)} u_k(n) + \frac{\Delta \rho_{m-k}(n)}{\rho_{m-k}(n)} \phi_k(n) = 0, \]

(2.14)
Hence, applying Lemma 2.1 to (2.14) with

Suppose (2.16) holds. In view of (2.8) and the boundedness of

implies that \(\lim_{n \to \infty} \) which contradicts the boundedness of

Thus, it follows that \(\lim_{n \to \infty} \) is finite. Therefore, \(\lim_{n \to \infty} \)

This limit must be finite since \(\lim_{n \to \infty} u_{k-1}(n) = -\infty \) implies \(\lim_{n \to \infty} y_n = -\infty \), which contradicts the positivity of \(\{y_n\} \), and \(\lim_{n \to \infty} u_{k}(n) = \infty \) implies \(\lim_{n \to \infty} y_n = \infty \), which contradicts the boundedness of \(\{y_n\} \). Continuing in this way, \(\lim_{n \to \infty} u_{m-1}(n) \) is finite. Therefore, \(\lim_{n \to \infty} y_n \) exists as a finite number. On the other hand, in view of (2.7) and (2.17), it is easy to verify that

Thus, it follows that \(\lim_{n \to \infty} y_n = 0 \), and this completes the proof of the theorem.
Example 2.3. Consider the difference equation
\[\Delta(n\Delta(n(n+1)\Delta y_n))) + y_{\gamma n} = \frac{1}{y_n}, \quad n \geq 1, \]
(2.22)
where \(\gamma \) is a positive integer. We have \(\rho_1(n) = \rho_2(n) = \rho_3(n) = 1/(n+1) \) and we see that all conditions of Theorem 2.2 are satisfied. Hence, all bounded nonoscillatory solutions of (2.22) tend to zero as \(n \to \infty \). In fact, \(\{y_n\} = \{1/n\} \) is a solution of (2.22) having this property.

In the following theorem, we show that the conclusion of Theorem 2.2 still holds if the roles of the sequences \(\{q_{\gamma n}\} \) and \(\{q_{\gamma^{-1}n}\} \) are interchanged.

Theorem 2.4. All bounded nonoscillatory solutions of (1.1) tend to zero as \(n \to \infty \) if the following conditions are satisfied:
\[\sum_{n=N+1}^{\infty} \rho_{m-1}(n)q_n^\gamma < \infty, \]
(2.23)
\[\sum_{n=N}^{\infty} \rho_{m-1}(n)q_n^{-\gamma} = \infty, \]
(2.24)
\[\sum_{n=N}^{\infty} \rho_{m-1}(n)|e_n| < \infty. \]
(2.25)

Proof. Let \(\{y_n\} \) be a bounded nonoscillatory solution of (1.1), say, \(y_n > 0 \) and \(y_{\sigma(n)} > 0 \) for \(n \geq N_1 \geq N_0 \). Define \(G_i(n) \) and \(u_k(n) \) as in (2.9) and (2.11). Assume that
\[\sum_{n=N_1+1}^{\infty} \rho_{m-1}(n)q_n^\gamma f(y_{\sigma(n)}) = \infty. \]
(2.26)
Letting \(n \to \infty \) in (2.15) and using (2.23), (2.25), and the boundedness of \(\{y_n\} \), we obtain \(\lim_{n \to \infty} u_0(n) = \infty \). Applying Lemma 2.1 to (2.14) with \(k = 1 \), we see that \(\lim_{n \to \infty} u_1(n) = \infty \). Repeated applications of this argument yield \(\lim_{n \to \infty} u_{m-1}(n) = \infty \), which implies that \(\lim_{n \to \infty} y_n = \infty \). This contradicts the boundedness of \(\{y_n\} \), and so we must have
\[\sum_{n=N_1+1}^{\infty} \rho_{m-1}(n)q_n^{-\gamma} f(y_{\sigma(n)}) < \infty. \]
(2.27)
The remainder of the proof is similar to the proof of Theorem 2.2 and will be omitted.

Example 2.5. Consider the equation
\[\Delta^4(2^{n+1}\Delta y_n) - 2^n y_{n-2}^3 = -\frac{1}{4^{n-3}}, \quad n \geq 0. \]
(2.28)
It is easy to verify that the hypotheses of Theorem 2.4 are satisfied with \(\rho_1(n) = \rho_2(n) = \rho_3(n) = 1/2^{n+1} \). It follows that all bounded nonoscillatory solutions of (2.28) approach zero as \(n \to \infty \). One such solution is \(\{y_n\} = \{1/2^n\} \).

As an example where \(\{q_n\} \) is oscillatory, we have the following example.
\textbf{Example 2.6.} Consider the equation
\begin{equation}
\Delta^3(2^{n+1}\Delta y_n) + \left(2^{n-1}[1 + (-1)^n] - \frac{1 + (-1)^{n+1}}{2n^2}\right)y_n
= \frac{1 + (-1)^n}{2} - \frac{1 + (-1)^{n+1}}{2n^2}, \quad n \geq 1.
\end{equation}

Observe that \(q_n^+ = 2^n, \ q_n^- = -1/n^2, \) and \(\rho_1(n) = \rho_2(n) = \rho_3(n) = 1/2^{n+1}. \) All the hypotheses of Theorem 2.2 are satisfied so all bounded nonoscillatory solutions of (2.29) approach zero as \(n \to \infty. \) Here, \(\{y_n\} = \{1/2^n\} \) is such a solution. Clearly, a simple modification of this equation will yield an example of Theorem 2.4.

In our final result, we examine (1.1) in the case where \(\{q_n\} \) is positive and establish conditions under which all nonoscillatory solutions are bounded and tend to zero as \(n \to \infty. \)

\textbf{Theorem 2.7.} Assume that condition (1.4) holds, \(\{q_n\} \) is positive, \(\liminf_{u \to -\infty} f(u) > 0, \) and \(\limsup_{u \to -\infty} f(u) < 0. \) If
\begin{equation}
\sum_{n=N}^{\infty} \rho_{m-1}(n)q_n = \infty,
\end{equation}
\begin{equation}
\sum_{n=N}^{\infty} |e_n| < \infty,
\end{equation}
then all nonoscillatory solutions of (1.1) tend to zero as \(n \to \infty. \)

\textbf{Proof.} Let \(\{y_n\} \) be a nonoscillatory solution of (1.1), say, \(y_n > 0 \) and \(y_{\sigma(n)} > 0 \) for \(n \geq N_1 \geq N_0. \) Define \(G_i(n) \) and \(u_k(n) \) as in (2.9) and (2.11). We will first show that \(\{y_n\} \) is bounded above. From (1.1), we obtain
\begin{equation}
G_{m-1}(n) - G_{m-1}(N_1) + \sum_{s=N_1}^{n-1} q_s f(y_{\sigma(s)}) = \sum_{s=N_1}^{n-1} e_s.
\end{equation}
Since the first sum in (2.32) is positive, and by (2.31), the second sum is bounded, there exists a constant \(K_{m-1} \) such that
\begin{equation}
G_{m-1}(n) = a_n^{m-1} \Delta G_{m-2}(n) \leq K_{m-1} \quad \text{for} \quad n \geq N_1.
\end{equation}
Dividing the last inequality by \(a_n^{m-1} \) and summing from \(N_1 \) to \(n - 1, \) we obtain
\begin{equation}
G_{m-2}(n) - G_{m-2}(N_1) \leq K_{m-1} \sum_{s=N_1}^{n-1} \frac{1}{a_s^{m-1}} \quad \text{for} \quad n \geq N_1,
\end{equation}
which, in view of (1.4), implies there exists a constant \(K_{m-2} \) such that
\begin{equation}
G_{m-2}(n) = a_n^{m-2} \Delta G_{m-3}(n) \leq K_{m-2} \quad \text{for} \quad n \geq N_1.
\end{equation}
Repeatedly applying the above argument, we obtain constants \(K_{m-3}, \ldots, K_1, K_0 \) such that
\begin{equation}
G_{m-3}(n) \leq K_{m-3}, \ldots, \ G_1(n) \leq K_1, \ G_0(n) \leq K_0 \quad \text{for} \quad n \geq N_1.
\end{equation}
It follows that \(\{y_n\} \) is bounded from above.
Now, we argue as in the proof of Theorem 2.2 using
\[\sum_{s=N_1+1}^{n} \rho_{m-1}(s) \Delta G_{m-1}(s) + \sum_{s=N_1+1}^{n} \rho_{m-1}(s) q_s f(y_{\sigma(s)}) = \sum_{s=N_1+1}^{n} \rho_{m-1}(s) e_s \] (2.37)
in place of (2.15). Noting that (2.31) implies the right-hand side of (2.37) tends to a finite limit as \(n \to \infty \), we claim that
\[\sum_{s=N_1+1}^{n} \rho_{m-1}(s) q_s f(y_{\sigma(s)}) < \infty. \] (2.38)
If this was not the case, we could use Lemma 2.1 to obtain \(\lim_{n \to \infty} u_k(n) = -\infty \) for \(k = 0,1,\ldots,m-1 \), and contradict the boundedness of \(\{y_n\} \). Next, using (2.37) and (2.38) we can show that \(\lim_{n \to \infty} u_k(n) \) is finite for each \(k = 0,1,\ldots,m-1 \). Thus, \(\lim_{n \to \infty} y_n \) exists and is finite. On the other hand, from (2.30) and (2.38), we see that \(\liminf_{n \to \infty} y_n = 0 \). Hence, \(\{y_n\} \) tends to zero as \(n \to \infty \), and this completes the proof of the theorem.

We conclude this paper with some examples of Theorem 2.7.

Example 2.8. Consider the equation
\[\Delta (2^n \Delta (2^n \Delta (2^n \Delta y_n))) + 8^n y_{n+k}^3 = \frac{1}{8^k}, \quad n \geq 0, \] (2.39)
where \(k \) is a positive integer. In this case, \(\rho_1(n) = 1/2^n, \rho_2(n) = (1/3)(1/4^n), \) and \(\rho_3(n) = (1/21)(1/8^n) \). Since all conditions of Theorem 2.7 are satisfied, every nonoscillatory solution of (2.39) tends to zero as \(n \to \infty \), and \(\{y_n\} = \{1/2^n\} \) is such a solution.

Example 2.9. Consider the equation
\[\Delta (n(n+1)\Delta ((n+2)(n+3)\Delta (n(n+1)\Delta y_n))) + n^4 y_{kn}^3 = \frac{n}{k^3(kn+1)^3}, \quad n \geq 1, \] (2.40)
where \(k \) is a positive integer. All the hypotheses of Theorem 2.7 are satisfied with \(\rho_1(n) = 1/(n+1), \rho_2(n) = 1/2(n+1)(n+2), \) and \(\rho_3(n) = 1/6(n+1)(n+2)(n+3) \), so every nonoscillatory solution of (2.40) tends to zero as \(n \to \infty \). Here, \(\{y_n\} = \{1/n(n+1)\} \) is a solution of (2.40).

References

E. THANDAPANI AND S. LOURDU MARIAN: DEPARTMENT OF MATHEMATICS, PERIYAR UNIVERSITY, SALEM 636011, TAMIL NADU, INDIA

JOHN R. GRAEF: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE AT CHATTANOOGA, CHATTANOOGA, TN 37403, USA

E-mail address: john-graef@utc.edu
Mathematical Problems in Engineering

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors
Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br

Hindawi Publishing Corporation
http://www.hindawi.com