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ON SOME PROPERTIES OF BANACH OPERATORS
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Abstract. A mapping α from a normed space X into itself is called a Banach operator if
there is a constant k such that 0≤ k < 1 and ‖α2(x)−α(x)‖ ≤ k‖α(x)−x‖ for all x ∈X.
In this note we study some properties of Banach operators. Among other results we show
that if α is a linear Banach operator on a normed space X, then N(α−1) = N((α−1)2),
N(α−1)∩R(α−1)= (0) and if X is finite dimensional then X =N(α−1)⊕R(α−1), where
N(α−1) and R(α−1) denote the null space and the range space of (α−1), respectively
and 1 is the identity mapping on X. We also obtain some commutativity results for a pair
of bounded linear multiplicative Banach operators on normed algebras.
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1. Introduction. Let X be a normed space and α :X →X a mapping. Following [5],

α is said to be a Banach operator if there exists a constant k such that 0≤ k < 1 and

‖α2(x)−α(x)‖ ≤ k‖α(x)−x‖ for all x ∈X. Banach operators generalize contractions

and play an important role in the fixed point theory; their consideration essentially

goes back to Cheney and Goldstein [4] in the study of proximity maps on convex sets

(cf. [5] and the references therein). The purpose of this note is to study some further

properties of Banach operators. In Section 2, we prove some decomposition results

for Banach operators. For instance, we show that if α is a linear Banach operator on

a normed space X, then N(α−1)=N((α−1)2), N(α−1)∩R(α−1)= (0), and if X is

finite dimensional, then X =N(α−1)⊕R(α−1), where N(α−1) and R(α−1) denote

the null space of (α−1) and the range space of (α−1), respectively and 1 is the identity

mapping onX. This result is no longer true whenX is infinite dimensional. However, if

α is a bounded linear operator on a Hilbert spaceH such that α and α∗ have common

fixed points, then it is shown that N(α− 1)+R(α− 1) is dense in H. Though this

result is not directly related to Banach operators, yet it provides information about

decompositions; therefore, it is of independent interest and we include it here. The

techniques in the proof of this decomposition theorem lead to an alternate proof of

a well-known result on the residual spectrum of a bounded normal operator on H.

In Section 3, we study the operator equation α+cα−1 = β+cβ−1 for a pair of in-

vertible bounded linear Banach operators α and β on a normed space X where c
is an appropriate real or complex number. We briefly recall that the equation α+
α−1 = β+ β−1 has been extensively studied for a pair of automorphisms α, β on

von Neumann algebras, C∗-algebras and rings. Most of the results deal with decom-

position of the underlying structures with an additional assumption of commuta-

tivity of α and β. Certain situations are identified when the equation itself implies

the commutativity of α and β. Recently, this equation has been generalized as aα+
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bα−1 = aβ+bβ−1 for linear combinations aα+bα−1 of appropriate real or complex

numbers a,b. If we put c = b/a with a≠ 0, then the equation aα+bα−1 = aβ+bβ−1

becomes α+cα−1 = β+cβ−1 (cf. [3]). Among other results we show here that if α and

β are invertible bounded linear multiplicative Banach operators on a normed algebra

X with identity such that α(x)+cα−1(x) = β(x)+cβ−1(x) for all x ∈ X and if β is

inner (i.e., there exists an invertible element u ∈ X such that β(x) = uxu−1 for all

x ∈X), then α, β commute. For more on these operator equations we refer to [1, 3, 8]

where further references are given.

2. Decomposition results. Let X be a normed space and α a linear operator on X.

Denote by N(α), the null space of α and R(α), the range space of α. If X is finite

dimensional and N(α) = N(α2) then by the dimension theory of finite-dimensional

spaces, R(α) = R(α2) and X admits the decomposition X =N(α)⊕R(α). This result

may not be true when X is infinite dimensional. In fact, one cannot expect even a

weaker result that N(α)+R(α) is dense in X. For instance, one can find an injective

operator whose range is not dense. However, if α is a bounded linear Banach operator

on a normed space X, then N(α−1)=N((α−1)2), N(α−1)∩R(α−1)= (0), where 1

denotes the identity operator on X and if X is finite dimensional, then X =N(α−1)⊕
R(α−1). These and some other results are proved in this section.

Proposition 2.1. Let α be a linear Banach operator on normed space X, then

(i) N(α−1)=N((α−1)2),
(ii) N(α−1)∩R(α−1)= (0).

Proof. (i) N(α − 1) ⊆ N((α − 1)2) is obvious. Assume x ∈ N((α − 1)2). Then

(α−1)2(x)= α2x−2α(x)+x = 0; so α(x)−x =α2(x)−α(x) and since α is a Banach

operator, we get ‖α(x)−x‖ = ‖α2(x)−α(x)‖ ≤ k‖α(x)−x‖. Since 0≤ k < 1, we get

‖α(x)−x‖ = 0; that is, α(x) = x or x ∈ N(α−1). Thus N((α−1)2) ⊆ N(α−1) and

hence N(α−1)=N((α−1)2).
(ii) To prove N(α− 1)∩ R(α− 1) = (0), assume that y ∈ N(α− 1)∩ R(α− 1).

Then (α− 1)(y) = 0 and y = (α− 1)(x) for some x ∈ X and hence (α− 1)(y) =
(α−1)2(x)= 0 so that x ∈ N((α−1)2) = N(α−1), (by (i)). Thus y = (α−1)(x) = 0

and hence N(α−1)∩R(α−1)= (0).

It is obvious thatR((α−1)2)⊆ R(α−1). ThusN((α−1)2)∩R((α−1)2)⊆N((α−1)2)∩
R(α−1)=N(α−1)∩R(α−1)=(0), so that N((α−1)2)∩R((α−1)2)=(0).

IfX is finite dimensional then by the dimension theory of finite-dimensional spaces,

we can conclude that R((α−1)2) = R(α−1) and hence by Taylor [7, pages 271–273]

X =N(α−1)⊕R(α−1). Thus we have the following proposition.

Proposition 2.2. Let α be a linear Banach operator on a finite-dimensional normed

space X, then X =N(α−1)⊕R(α−1).

For certain operators on Hilbert spaces, we are able to get somewhat general forms

of the above result though it would be interesting to obtain a similar result for Banach

operators. However, this result is of independent interest in operator theory, so we

include it here.
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Proposition 2.3. Let α be a bounded linear operator on a Hilbert spaceH such that

α and α∗ have common fixed points, then N(α−1)∩R(α−1) = (0) and N(α−1)+
R(α−1) is dense in H.

Proof. If x ∈N(α−1)∩R(α−1), thenα(x)= x. Thus (by assumption)α∗(x)= x;

that is, x ∈ N(α∗ −1) = N((α−1)∗) = R(α−1)
⊥

. This implies that 〈x,x〉 = 0 and

hence x = 0. To prove the second part, assume that N(α − 1) + R(α − 1) is not

dense in H. Then there exists a nonzero continuous linear functional φ on H such

that φ vanishes on N(α− 1) and R(α− 1). That φ vanishes on R(α− 1) implies

φ(α(x)−x) = (φ ◦α)(x)−φ(x) = 0 or (φ ◦α)(x) = φ(x) for all x ∈ H. By the

Riesz-representation theorem, there is a unique y0 ∈ H such that φ(x) = 〈x,y0〉 =
(φ ◦α)(x) = 〈α(x),y0〉 = 〈x,α∗(y0)〉 for all x ∈ H and hence α∗(y0) = y0. By as-

sumption, α(y0)=y0; that is, y0 ∈N(α−1) and hence φ(y0)= 〈y0,y0〉 = ‖y0‖2 = 0;

that is, y0 = 0. It follows that φ(x) = 0 for all x ∈H, so φ = 0, a contradiction. This

completes the proof.

If α is a linear contraction on H then α and α∗ have common fixed points

(cf. [2, page 188]); therefore, we have the following corollary.

Corollary 2.4. If α is a linear contraction on a Hilbert space H, then N(α−1)∩
R(α−1)= (0) and N(α−1)+R(α−1) is dense in H.

If α is a bounded normal operator on H, then ‖(α−1)(x)‖ = ‖(α∗ −1)x‖ for all

x ∈H and henceα andα∗ have common fixed points; therefore, we have the following

corollary.

Corollary 2.5. If α is a bounded normal operator on a Hilbert space H, then

N(α−1)∩R(α−1)= (0) and N(α−1)+R(α−1) is dense in H.

It is well known that the residual spectrum of a bounded normal operator on a

Hilbert space H is empty (cf. [6, page 479]). The techniques in the proof of the above

proposition can be applied to obtain an alternate proof of this result.

Proposition 2.6. The residual spectrum Rσ(α) of a bounded normal operator α
on a Hilbert space H is empty.

Proof. Let λ∈ Rσ(α). Then N(α−λ)= (0) and R(α−λ)≠H. Let φ be a nonzero

continuous linear functional on H such that φ vanishes on R(α−λ). By the Riesz-

representation theorem, there is a uniquey0∈H such thatφ(x)=〈x,y0〉 for all x∈H.

Nowφ vanishes on R(α−λ); therefore,φ(α(x))=(φ◦α)(x)=λφ(x) for all x∈H and

hence φ(α(x)) = λφ(x) = λ〈x,y0〉 = 〈x,λ̄y0〉. Also, φ(α(x)) = 〈α(x),y0〉 = 〈x,
α∗(y0)〉, so that 〈x,λ̄y0〉 = 〈x,α∗(y0)〉 for all x ∈H and hence α∗(y0)= λ̄y0. Since

α is normal, we get α(y0) = λy0 and hence y0 ∈ N(α−λ) and consequently y0 = 0.

Thus φ=0, a contradiction and hence σR(α) is empty. This completes the proof.

3. Commutativity results. In this section, we mainly obtain some commutativity

results for a pair of invertible bounded linear Banach operators α, β satisfying the

equation α+cα−1 = β+cβ−1 on normed algebras. We begin with the following basic

result.
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Proposition 3.1. Let α be an invertible linear Banach operator on a normed space

X and x0 ∈ X such that α(x0)+ cα−1(x0) = (1+ c)x0, where c is a real or complex

number with |c| ≥ 1, then x0 is a fixed point of α.

Proof. The equation implies thatα2(x0)+cx0=(1+c)α(x0) and hence c(α(x0)−x0)
=α2(x0)−α(x0). Sinceα is a Banach operator, therefore there exists a constant kwith

0 ≤ k < 1 such that |c|‖α(x0)−x0‖ = ‖α2(x0)−α(x0)‖ ≤ k‖α(x0)−x0‖ and hence

‖α(x0)−x0‖ ≤ (k/|c|)‖α(x0)−x0‖ ≤ k‖α(x0)−x0‖ and since 0 ≤ k < 1, we obtain

α(x0)−x0 = 0 or α(x0)= x0.

The following proposition shows that under certain situations the equation α+
cα−1 = β+cβ−1 implies the commutativity of α, β.

Proposition 3.2. Let α, β be invertible linear multiplicative Banach operators on

a normed algebra X with identity such that α(x)+cα−1(x) = β(x)+cβ−1(x) for all

x ∈ X, where c is a real or complex number with |c| ≥ 1. If β is inner, then α, β
commute.

Proof. Assume that β(x) = uxu−1 for all x ∈ X, u ∈ X. Putting x = u in the

equation, we get α(u)+ cα−1(u) = (1+ c)u and by Proposition 3.1, α(u) = u, and

hence (βα)(x)= β(α(x))=uα(x)u−1 = α(u)α(x)α(u−1)= α(uxu−1)= α(β(x))=
(αβ)(x) for all x ∈X. This proves that α, β commute.

Proposition 3.3. Let α, β be invertible bounded linear multiplicative Banach oper-

ators on a normed algebra X with identity such that α(x)+cα−1(x)= β(x)+cβ−1(x)
for all x ∈X, ‖α−1‖< 1, ‖β−1‖< 1, where c is a real or complex number with |c|> 4

and β is inner. Then α= β.

Proof. By Proposition 3.2, α, β commute. The equation α(x)+cα−1(x)= β(x)+
cβ−1(x) together with the commutativity of α,β implies (αβ−c)(β−1−α−1)(x) = 0.

Put (β−1−α−1)(x)=y . Then (αβ−c)(y)= 0 orαβ(y)= cy , so that cy−βy =αβy−
βy = (α−1)β(y) and hence ‖cy−β(y)‖ = ‖(α−1)β(y)‖ ≤ ‖α−1‖‖β(y)‖< ‖β(y)‖.
That is, |‖cy‖−‖β(y)‖|< ‖β(y)‖. This implies that |c|‖y‖< 2‖β(y)‖ ≤ 2‖β‖‖y‖.
Since ‖β−1‖ < 1, we get |‖β‖−1| ≤ ‖β−1‖ < 1 and hence ‖β‖ < 2 so that |c|‖y‖ <
4‖y‖. Ify ≠ 0, then we get |c|< 4, a contradiction; thereforey = 0 and hence β−1(x)−
α−1(x)= 0 for all x ∈X. Since α, β commute and αβ is linear, we get α(x)−β(x)= 0;

that is, α(x)= β(x) for all x ∈X and hence α= β. This completes the proof.
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