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ULTRALOGICS AND PROBABILITY MODELS
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Abstract. We show how nonstandard consequence operators, ultralogics, can generate
the general informational content displayed by probability models. In particular, a prob-
ability model that predicts that a specific single event will occur and those models that
predict that a specific distribution of events will occur.
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1. Introduction. In [3], the theory of nonstandard consequence operators is intro-

duced. Consequence operators, as an informal theory for logical deduction, were

introduced by Tarski [6]. There are two such operators investigated, the finite and the

general consequence operator. Let L be any nonempty set that represents a language

and � the set-theoretic power set operator.

Definition 1.1. A mapping C : �(L)→�(L) is a general consequence operator (or

closure operator) if for each X,Y ∈�(L)
(i) X ⊂ C(X)= C(C(X))⊂ L and if

(ii) X ⊂ Y , then C(X)⊂ C(Y).
A consequence operator C defined on L is said to be finite (finitary, or algebraic) if it

satisfies

(iii) C(X)=∪{C(A) |A∈ F(X)}, where F is the finite power set operator.

Remark 1.2. The above axioms (i), (ii), and (iii) are not independent. Indeed, (i) and

(iii) imply (ii).

In [3], the language L and the set of all consequence operators defined on L are

encoded and embedded into a standard superstructure � = 〈�,∈,=〉. This standard

superstructure is further embedded into a nonstandard and elementary extension
∗� = 〈∗�,∈,=〉. For convenience, ∗� is considered to be a 2|�|-saturated enlarge-

ment. Then, in the usual constructive manner, ∗� is further embedded into the super-

structure, the Grundlegend structure, � = 〈Y ,∈,=〉 where, usually, the nonstandard

analysis occurs. In all that follows in this article, the Grundlegend superstructure � is

altered by adjoining to the construction of � a set of atoms that corresponds to the

real numbers. This yields a 2|�|-saturated enlargement ∗�1 and the corresponding

extended Grundlegend structure �1 [1, 2].

2. The main result. To indicate the intuitive ordering of any sequence of events,

the set T of Kleene styled “tick” marks, with a spacing symbol, is used [5, page 202] as

they might be metamathematically abbreviated by symbols for the nonzero natural
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numbers. Let G ⊂ L1 be considered as a fixed description for a source that yields,

through application of natural laws or processes, the occurrence of an event described

by E ⊂ L1. Further, the statement E′ ⊂ L1 indicates that the event described within the

statement E did not occur. Let L= {G}∪{E,E′}∪T . As usual, G, E, and E′ are assumed

to contain associated encoded general information [4]. Note that for subsets of L, bold

notation, such as G, denotes the image of G as it is embedded into �1.

Theorem 2.1. For the language L and any p ∈ R such that 0 ≤ p ≤ 1, where p
represents a theory predicted (i.e., a priori) probability that an event will occur, there

exists an ultrachoice function ∗C and an ultralogic Pp with the following properties:

(1) When Pp is applied to ∗{G} = {G} a hyperfinite set of “events” {a1, . . . ,an, . . . ,∗aν}
is obtained such that for any “n” trials, {a1, . . . ,an} is a finite identified “event” sequence,

where each ai determines the labeled event E or labeled non-event E′.
(2) The labeled events in (1) are sequentially determined by ∗C , where C determines

a sequence gap of relative frequencies that converges to p.

(3) The sequence of relative frequencies gap determined by ∗C gives the appearance

of theory dependent random chance.

Proof. All of the objects discussed will be members of an informal superstructure

at a rather low level and slightly abbreviated definitions, as also discussed in [1, pages

23, 30–31], are utilized. As usual N is the set of all natural numbers including zero,

and N>0 the set of all nonzero natural numbers.

Let A= {a | (a :N>0 →N)∧(∀n (n∈N>0 → (a(1)≤ 1∧0≤ a(n+1)−a(n)≤ 1)))}.
Note that the special sequences inA are nondecreasing and for eachn∈N>0,a(n)≤n.

Obviously A �= ∅, for the basic example to be used below, consider the sequence

a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2, a(6) = 3, a(7) = 3, a(8) = 4, . . .
which is a member of A. Next consider the most basic representation Q for the non-

negative rational numbers where we do not consider them as equivalence classes.

Thus Q= {(n,m) | (m∈N)∧(n∈N>0)}.
For each member of A, consider the sequence ga : N → Q defined by ga(n) =

(n,a(n)). Let F be the set of all such ga as a∈A. Consider from the above hypotheses,

any p ∈R such that 0≤ p ≤ 1. We show that for any such p there exists an a∈A and

a gap ∈ F such that limn→∞gap(n)= p. For each n∈N>0, consider n subdivisions of

[0,1], and the corresponding intervals [ck,ck+1), where ck+1−ck = 1/n, 0≤ k <n, and

c0 = 0, cn = 1. If p = 0, let a(n)= 0 for each n∈N>0. Otherwise, using the customary

covering argument relative to such intervals, the number p is a member of one and

only one of these intervals, for eachn∈N>0.Hence for each suchn> 0, select the end

point ck of the unique interval [ck,ck+1) that containsp.Notice that forn= 1, ck = c0 =
0. For each such selection, let a(n)= k. Using this inductive styled definition for the

sequence a, it is immediate, from a simple induction proof, that a ∈ A, gap ∈ F , and

that limn→∞gap(n)= p. For example, consider the basic sequence a in paragraph 2 of

this proof. Then gap = {(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3),(8,4), . . .} is such a

sequence that converges to 1/2. Let Fp ⊂ F be the nonempty set of all such gap . Note

that for the set Fp , p is fixed and Fp contains each gap , as a varies overA, that satisfies

the convergence requirement. Thus, for 0 ≤ p ≤ 1, A is partitioned into subsets Ap
and a single set A′ such that each member of Ap determines a gap ∈ Fp . The elements
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of A′ are the members of A that are not so characterized by such a p. Let � denote

this set of partitions.

Let B = {f | ∀n∀m(((n∈N>0)∧(m∈N)∧(m≤n))→ ((f : ([1,n]×{n})×{m} →
{0,1})∧(∀j(((j ∈N>0)∧(1≤ j ≤n))→ (∑n

j=1f(((j,n),n),m)=m)))))}. The mem-

bers of B are determined, but not uniquely, by each (n,m) such that (n ∈ N>0)∧
(m ∈ N)∧ (m ≤ n). Hence for each such (n,m), let fnm ∈ B denote a member of B
that satisfies the conditions for a specific (n,m).

For a givenp, by application of the axiom of choice, with respect to �, there is ana∈
Ap and a gap with the properties discussed above. Also there is a sequence fna(n) of

partial sequences such that, when n> 1, it follows that (†) fna(n)(j)= f(n−1)a(n−1)(j)
as 1≤ j ≤ (n−1). Relative to the above example, consider the following:

f1a(1)(1)= 0,

f2a(2)(1)= 0, f2a(2)(2)= 1,

f3a(3)(1)= 0, f3a(3)(2)= 1, f3a(3)(3)= 0,

f4a(4)(1)= 0, f4a(4)(2)= 1, f4a(4)(3)= 0, f4a(4)(4)= 1,

f5a(5)(1)= 0, f5a(5)(2)= 1, f5a(5)(3)= 0, f5a(5)(4)= 1, f5a(5)(5)= 0, . . . .

(2.1)

It is obvious how this unique sequence of partial sequences is obtained from any

a ∈ A. For each a ∈ A, let Ba = {fnm | ∀n (n ∈ N>0 → m = a(n))}. Let B†a ⊂ Ba
such that each fnm ∈ B†a satisfies the partial sequence requirement (†). For each

n ∈ N>0, let Pfna(n) ∈ B†a denote the unique partial sequence of n terms generated

by an a and the (†) requirement. In general, as will be demonstrated below, it is the

Pfna(n) that yields the set of consequence operators as they are defined on L1. Con-

sider an additional map M from the set PF = {Pfna(n) | a ∈ A} of these partial se-

quences into our descriptive language L1 for the source G and events E, E′ as they

are now considered as labeled by the tick marks. For each n ∈ N>0, and 1 ≤ j ≤ n, if

Pfna(n)(j)= 0, then M(Pfna(n)(j))= E′ (i.e., E′ = E does not occur); if Pfna(n)(j)= 1,

then M(Pfna(n)(j)) = E (i.e., E does occur), as 1 ≤ j ≤ n, where the partial sequence

j = 1, . . . ,n models the intuitive concept of an event sequence since each E or E′ now

contains the appropriate Kleene “tick” symbols or natural number symbols that are

an abbreviation for this tick notation.

Consider the set of consequence operators, each defined on L, H = {C(X,{G}) |
X ⊂ L}, where if G ∈ Y , then C(X,{G})(Y) = Y ∪X; if G ∉ Y , then C(X,{G})(Y) = Y .

Then for each a ∈ Ap , n ∈ N>0 and the respective Pfna(n), there exists the set of

consequence operators Cap = {C({M(Pna(n)(j))},{G}) | 1 ≤ j ≤ n} ⊂ H. Note that

from [3, page 5], H is closed under the finite ∨ and the actual consequence operator

is C({M(Pna(n)(1))}∪···∪{M(Pna(n)(n))},{G}). Applying a realism relation R (i.e.,

in general, R(C({G})) = C({G})−{G}) to C({M(Pna(n)(1))}∪ ···∪ {M(Pna(n)(n))},
{G})({G}) yields the actual labeled or identified event partial sequence {M(Pna(n)(1)),
. . . ,M(Pna(n)(n))}.

Now embed the above intuitive results into the superstructure �1 = 〈�,∈,=〉 which

is further embedded into the nonstandard structure ∗�1 = 〈∗�,∈,=〉 [1, 2]. Let p ∈R
be such that 0≤ p ≤ 1, where p represents a theory predicted (i.e., a priori) probability

that an event will occur. Applying a choice function C to �, there is some a ∈ Ap
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such that gap → p. Thus ∗C applied to ∗� yields ∗a ∈ ∗Ap and ∗gap ∈ ∗Fp . Let

ν ∈ ∗N be any infinite natural number. The hyperfinite sequence {a1, . . . ,an, . . . ,∗aν}
exists and corresponds to {a1, . . . ,an} for any natural number n∈N>0. Also we know

that st(∗aµ) = p for any infinite natural number µ. Thus there exists some internal

hyperfinite Pfν∗a(ν) ∈ ∗PF with the ∗-transferred properties mentioned above. Since
∗H is closed under hyperfinite ∨, there is a Pp ∈ ∗H such that, after application of the

relation ∗R, the result is the hyperfinite sequence

S = {∗M(Pν∗a(ν)(1)
)
, . . . ,∗M

(
Pν∗a(ν)(j)

)
, . . . ,∗M

(
Pν∗a(ν)(ν)

)}
. (2.2)

Note that if j ∈N, then we have that ∗E= E or ∗E′ = E′ as the case may be.

An extended standard mapping that restricts S to internal subsets would restrict

S to {∗M(Pν∗a(ν)(1)), . . . ,∗M(Pν∗a(ν)(j))}, whenever j ∈ N>0. Such a restriction map

models the restriction of S to the natural-world in accordance with the general inter-

pretation given for internal or finite standard objects [2, page 98]. This completes the

proof.

3. Distributions. Prior to considering the statistical notion of a frequency (mass,

density) function and the distribution it generates, there is need to consider a finite

Cartesian product consequence operator. Suppose that we have a finite set of con-

sequence operators {C1, . . . ,Cm}, where at least one is axiomless, each defined upon

its own language Lk. Define the operator ΠCm as follows: for any X ⊂ L1×···×Lm,

using the projections prk, consider the Cartesian product pr1(X)×···×prm(X). Then

ΠCm(X)= C1(pr1(X))×···×Cm(prm(X)) is a consequence operator on L1×···×Lm.

If each Ck is a finite consequence operator, then ΠCm is finite. In all other cases, ΠCm
is a general consequence operator. All of these standard facts also hold within our

nonstandard structure under ∗-transfer.

A distribution’s frequence function is always considered to be the probabilistic

measure that determines the number of events that occur within a cell or “interval”

for a specific decomposition of the events into various definable and disjoint cells.

There is a specific probability that a specific number of events will be contained in a

specific cell and each event must occur in one and only one cell and not occur in any

other cell.

For each distribution over a specific set of cells, Ik, there is a specific probability

pk that an event will occur in the cell Ik. Assuming that the distribution does indeed

depict physical behavior, we will have a special collection of gapk sequences generated.

For example, assume that we have three cells and the three probabilities p1 = 1/4,

p2 = 1/2, p3 = 1/4 occur in I1, I2, I3, respectively. Assume that the number of events

to occur is 6. Then the three partial sequences might appear as follows

gap1 =
{
(1,1),(2,1),(3,1),(4,2),(5,2),(6,2)

}
,

gap2 =
{
(1,0),(2,1),(3,2),(4,2),(5,2),(6,3)

}
,

gap3 =
{
(1,0),(2,0),(3,0),(4,0),(5,1),(6,1)

}
.

(3.1)

Thus after six events have occurred, 2 events are in the first cell, 3 events are in the

second cell, and only 1 event is in the third cell. Of course, as the number of events
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continues the first sequence will converge to 1/4, the second to 1/2, and the third to

1/4. Obviously, for any n≥ 1, gap1(n)+gap1(n)+gap3(n)=n. Clearly, these required

gapi properties can be formally generated and generalized to any finite number m of

cells.

Relative to each factor of the Cartesian product set, all of the standard aspects of

Theorem 2.1 will hold. Further, these intuitive results are embedded into the above su-

perstructure and further embedded into our nonstandard structure. Hence, assume

that the languages Lk = L1 and that the standard factor consequence operator Ck
used to create the product consequence operator is a Capk of Theorem 2.1. Under

the nonstandard embedding, we would have that for each factor, there is a pure non-

standard consequence operator Ppk ∈ ∗Hk. Finally, consider the nonstandard product

consequence operator ΠPpm . For ∗({G1}×···×{Gm}) = {G1}× ···× {Gm}, Gi = G,

this nonstandard product consequence operator yields for any fixed event number n,

an ordered m-tuple, where one and only one coordinate would have the statement E

and all other coordinates the E′. It would be thesem-tuples that guide the proper cell

placement for each event and would satisfy the usual requirements of the distribution.

Hence, the patterns produced by a specific frequency function for a specific distribu-

tion may be rationally assumed to be the result of an application of an ultralogic.
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