FINITE AG-GROUPOID WITH LEFT IDENTITY AND LEFT ZERO

QAISER MUSHTAQ and M. S. KAMRAN

(Received 3 October 2000)

ABSTRACT. A groupoid *G* whose elements satisfy the left invertive law: (ab)c = (cb)a is known as Abel-Grassman's groupoid (AG-groupoid). It is a nonassociative algebraic structure midway between a groupoid and a commutative semigroup. In this note, we show that if *G* is a finite AG-groupoid with a left zero then, under certain conditions, *G* without the left zero element is a commutative group.

2000 Mathematics Subject Classification. 20N99.

1. Preliminaries. An Abel-Grassman's groupoid [6], abbreviated as AG-groupoid, is a groupoid *G* whose elements satisfy the left invertive law: (ab)c = (cb)a. It is also called a left almost semigroup [2, 3, 4, 5]. In [1], the same structure is called left invertive groupoid. In this note we call it AG-groupoid.

It is a nonassociative algebraic structure midway between a groupoid and a commutative semigroup. The structure is medial [5], that is, (ab)(cd) = (ac)(bd) for all $a, b, c, d \in G$. It has been shown in [5] that if an AG-groupoid contains a left identity then it is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. An element a_0 of an AG-groupoid G is called a left (right) zero if $a_0a = a_0(aa_0 = a_0)$ for all $a \in G$.

Let *a*, *b*, *c*, and *d* belong to an AG-groupoid with left identity and ab = cd. Then it has been shown in [5] that ba = dc.

An element a^{-1} of an AG-groupoid with left identity e is called a left inverse if $a^{-1}a = e$. It has been shown in [5] that if a^{-1} is a left inverse of a then it is unique and is also the right inverse of a.

If for all *a*, *b*, *c* in an AG-groupoid *G*, ab = ac implies that b = c, then *G* is known as left cancellative. Similarly, if ba = ca, implies that b = c, then *G* is called right cancellative. It is known [5] that every left cancellative AG-groupoid is right cancellative but the converse is not true. However, every right cancellative AG-groupoid with left identity is left cancellative.

In this note, we show that if *G* is a finite AG-groupoid with left identity and a left zero a_0 , under certain conditions $G \setminus \{a_0\}$ is a commutative group without a left zero.

2. Results. We need the following theorem from [4] for our main result.

THEOREM 2.1 [4]. A cancellative AG-groupoid G is a commutative semigroup if a(bc) = (cb)a for all $a, b, c \in G$.

We now state and prove our main result.

THEOREM 2.2. Let (G, \circ) be a finite AG-groupoid with at least two elements. Suppose that it contains a left identity and a left zero a_0 . Then $G^0 = G \setminus \{a_0\}$ is a commutative group under the binary operation (\circ) provided there is another binary operation (*) such that

- (i) (G, *) is an AG-groupoid with left identity and left inverses,
- (ii) $a_0 * a = a$, for all $a \in G$,
- (iii) $(a * b) \circ c = (a \circ c) * (b \circ c)$, for all $a, b, c \in G$,
- (iv) $a \circ b = a_0$ implies that either $a = a_0$ or $b = a_0$ for all $a, b \in G$,
- (v) $a \circ (b \circ c) = (c \circ b) \circ a$, for all $a, b, c \in G$.

PROOF. Suppose that $G = \{a_0, a_1, ..., a_m\}$, where *m* is a positive integer, is an AGgroupoid with left identity under the binary operation (\circ). Let *e* be the identity element of *G*. It is certainly different from a_0 because of (ii) and because a_0 is the left zero under (\circ). The left invertive law together with (iv) implies that $(a \circ a_0) \circ e = (e \circ a_0) \circ a =$ $a_0 \circ a = a_0$, where $e \neq a_0$. That is,

$$a_0 \circ a = a \circ a_0 = a_0. \tag{2.1}$$

Now consider the subset G^0 of G which is obtained from it by deleting a_0 , so that $G^0 = \{a_i : i = 1, 2, ..., m\}$. In view of the facts that a_0 is a zero under the binary operation (\circ) and it is the left identity under (*) and that (G, \circ) is a finite AG-groupoid with left identity. (G^0 , \circ) is also a finite AG-groupoid with left identity having the same e as the left identity in which all elements are distinct.

We now examine whether an element a of G^0 has an inverse in G^0 under (\circ) or not. We construct a set $H_k = \{a_k \circ a_1, a_k \circ a_2, \dots, a_k \circ a_m\}$, where $a_k \neq a_0$. If $a_k = a_0$, then because a_0 is a left zero in G under (\circ) and the left identity under (*), the ultimate form of the set H_k will be $\{a_0\}$. Therefore it validates our supposition that $a_k \neq a_0$.

We assert that H_k contains m elements. Suppose otherwise and let

$$a_k \circ a_r = a_k \circ a_s, \tag{2.2}$$

for some r, s = 1, 2, ..., m and $r \neq s$. Since H_k is an AG-groupoid with left identity under (\circ), therefore (2.2) implies that

$$a_r \circ a_k = a_s \circ a_k, \tag{2.3}$$

for some r, s = 1, 2, ..., m and $r \neq s$. Consider now the element $(a_s * a_r^{-1}) \circ a_k$, which is certainly an element of *G*, where a_r^{-1} is the left inverse of a_r in *G* with respect to (*). Now,

$$(a_s * a_r^{-1}) \circ a_k = (a_s \circ a_k) * (a_r^{-1} \circ a_k) = (a_r \circ a_k) * (a_r^{-1} \circ a_k) = (a_r * a_r^{-1}) \circ a_k = a_0 \circ a_k = a_0.$$
(2.4)

Because of (iii), equation (2.3) and the facts that a_r^{-1} is the inverse of a_r under (*). Thus $(a_s * a_r^{-1}) \circ a_k = a_0$. Since $a_k \neq a_0$, therefore because of (iv), $a_s * a_r^{-1} = a_0$. Next $(a_s * a_r^{-1}) \circ a_r = a_0 * a_r$ implies that $(a_s * a_r^{-1}) \circ a_r = a_r$ because a_0 is the left identity in *G* under (*). Hence, $a_r = (a_s * a_r^{-1}) * a_r = (a_r * a_r^{-1}) * a_s = a_0 * a_s$ that is, $a_r = a_s$. Since $|H_k| = m$, therefore the result $a_r = a_s$ contradicts our assumption; thus

388

proving that H_k contains distinct elements. Since H_k is contained in G^0 and $|G^0| = m$ we have $H_k = G^0$.

Also, since G^0 is an AG-groupoid under (\circ) with the left identity e, so is H_k and hence H_k contains the left identity e. So, e will be of the form $a_i \circ a_j$, that is, $e = a_i \circ a_j$ implying that a_i is the left inverse of a_j under the binary operation (\circ). But in an AG-groupoid with left identity, if it contains left inverses, every left inverse is a right inverse. Thus a_j is the right inverse of a_j under (\circ).

Since k = 1, 2, ..., m has been chosen arbitrarily, we have shown that G^0 is an AGgroupoid with left identity and inverses under the binary operation (\circ).

If $a_i, a_j, a_k \in G^0$ such that $a_i \circ a_k = a_j \circ a_k$, then $(a_i \circ a_k) \circ a_k^{-1} = (a_j \circ a_k) \circ a_k^{-1}$ implies that $(a_k^{-1} \circ a_k) \circ a_i = (a_k^{-1} \circ a_k) \circ a_j$ and so $a_i = a_j$. Thus G^0 is right cancellative under (\circ) . But G^0 being right cancellative under (\circ) , is left cancellative also, therefore G^0 is cancellative. Since G^0 is cancellative whose elements satisfy condition (v), therefore by applying Theorem 2.1, we conclude that G^0 is a commutative group under (\circ) .

COROLLARY 2.3. *If* (G, \circ) *is a finite* AG*-groupoid with left identity and a left zero* a_0 *, then* $(G \setminus \{a_0\}, \circ)$ *is a cancellative* AG*-groupoid with left identity and inverses provided there is another binary operation* (*) *such that*

- (i) (G, *) is an AG-groupoid with left identity and left inverses,
- (ii) $a_0 * a = a$, for all $a \in G$,
- (iii) $(a * b) \circ c = (a \circ c) * (b \circ c)$, for all $a, b, c \in G$,
- (iv) $a \circ b = a_0$ implies that either $a = a_0$ or $b = a_0$ for all $a, b \in G$.

PROOF. The proof is analogous to the proof of Theorem 2.2.

ACKNOWLEDGEMENT. The authors are grateful to the referee for his invaluable suggestions.

REFERENCES

- P. Holgate, *Groupoids satisfying a simple invertive law*, Math. Student **61** (1992), no. 1-4, 101-106. MR 95d:20113. Zbl 900.20160.
- M. A. Kazim and M. Naseeruddin, On almost semigroups, Aligarh Bull. Math. 2 (1972), 1–7. MR 54#7662. Zbl 344.20049.
- Q. Mushtaq and Q. Iqbal, Decomposition of a locally associative LA-semigroup, Semigroup Forum 41 (1990), no. 2, 155–164. MR 91f:20067. Zbl 682.20049.
- [4] Q. Mushtaq and M. S. Kamran, *On LA-semigroups with weak associative law*, Sci. Khyber 2 (1989), no. 1, 69–71.
- [5] Q. Mushtaq and S. M. Yusuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978), 65-70. MR 84c:20086. Zbl 509.20055.
- [6] P. V. Protić and M. Božinović, Some congruences on an AG**-groupoid, Filomat (1995), no. 9, part 3, 879–886. MR 97b:20097. Zbl 845.20052.

QAISER MUSHTAQ: DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY, ISLAMABAD, PAKISTAN

E-mail address: qmushtaq@apollo.net.pk

M. S. KAMRAN: DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY, ISLAMABAD, PAKISTAN