ON ALMOST PERIODIC SOLUTIONS OF THE DIFFERENTIAL EQUATION x''(t) = Ax(t) IN HILBERT SPACES

GASTON M. N'GUEREKATA

(Received 31 January 2001)

ABSTRACT. We prove almost periodicity of solutions of the equation x''(t) = Ax(t) when the linear operator A satisfies an inequality of the form $Re(Ax,x) \ge 0$.

2000 Mathematics Subject Classification. 34G10, 34K14.

1. Introduction. Let H be a Hilbert space equipped with norm $\|\cdot\|$ and scalar product (\cdot,\cdot) . Almost periodic functions (in Bochner's sense) are continuous functions $f: \mathbb{R} \to H$ such that for every $\epsilon > 0$, there exists a positive real number l such that every interval [a,a+l] contains at least a point τ such that

$$\sup_{t \in \mathbb{R}} ||f(t+\tau) - f(t)|| < \epsilon. \tag{1.1}$$

The Bochner's criterion (cf. [1, 3, 4]) states that a function $f: \mathbb{R} \to H$ is almost periodic if and only if for every sequence of real numbers $(\sigma_n)_{n=1}^{\infty}$ there exists a subsequence $(s_n)_{n=1}^{\infty}$ such that $(f(t+s_n))_{n=1}^{\infty}$ is uniformly convergent in $t \in \mathbb{R}$.

We proved in [2] that if $A = A_+ + A_-$, where A_+ is a symmetric linear operator and A_- is a skew-symmetric linear operator such that $\text{Re}(A_+x,A_-x) \ge -c\|A_+x\|^2$ for every $x \in H$, then every solution of x'(t) = Ax(t), $t \in \mathbb{R}$, with a relatively compact range in H is almost periodic.

In this note, we use the technique described in [2] to prove similar results for some classes of linear differential equation of second order x''(t) = Ax(t).

2. Main results

THEOREM 2.1. Assume that the linear operator A satisfies the inequality of the form $Re(Ax,x) \ge 0$, for any $x \in H$. Then solutions of the differential equation

$$\chi''(t) = A\chi(t), \quad t \in \mathbb{R},\tag{2.1}$$

(that are functions $x(t) \in C^2(\mathbb{R}, H)$) with relatively compact ranges in H, are almost periodic.

PROOF. Consider x(t) a solution of (2.1) with a relatively compact range in H and let $\phi : \mathbb{R} \to \mathbb{R}$ be defined by $\phi(t) = \|x(t)\|^2$. Then ϕ is a bounded function over \mathbb{R} .

Moreover, for every $t \in \mathbb{R}$, we have

$$\phi'(t) = (x'(t), x(t)) + (x(t), x'(t)),$$

$$\phi''(t) = 2[||x'(t)||^2 + \text{Re}(Ax(t), x(t))]$$

$$\geq 0,$$
(2.2)

which shows that ϕ is a convex function over \mathbb{R} , therefore it is constant

$$\phi(t) = \phi(0), \quad \forall t \in \mathbb{R}, \tag{2.3}$$

or

$$||x(t)|| = ||x(0)||, \quad \forall t \in \mathbb{R}.$$
 (2.4)

We fix $s \in \mathbb{R}$ and consider the function $y_s(\cdot) : \mathbb{R} \to H$ defined by

$$y_s(t) = x(t+s). \tag{2.5}$$

Then $y_s(t)$ obviously satisfies (2.1). Now fix s_1 and s_2 in \mathbb{R} . Then $y_{s_1}(t) - y_{s_2}(t)$ also satisfies (2.1); therefore we have

$$||y_{s_1}(t) - y_{s_2}(t)|| = ||y_{s_1}(0) - y_{s_2}(0)||, \quad \forall t \in \mathbb{R},$$
 (2.6)

which gives

$$||x(t+s_1) - x(t+s_2)|| = ||x(s_1) - x(s_2)||, \quad \forall t \in \mathbb{R}.$$
 (2.7)

Let $(\sigma_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then by relative compactness of x(t), there exists a subsequence $(s_n)_{n=1}^{\infty} \subset (\sigma_n)_{n=1}^{\infty}$ such that $(x(s_n))_{n=1}^{\infty}$ is Cauchy. Hence for any given $\epsilon > 0$, there exists N such that if n, m > N, then

$$||x(s_n) - x(s_m)|| < \epsilon. \tag{2.8}$$

Consequently,

$$\sup_{t\in\mathbb{R}}||x(t+s_n)-x(t+s_m)||<\epsilon. \tag{2.9}$$

We conclude that x(t) is almost periodic by the Bochner's criterion.

REMARK 2.2. Examples of such problem occur when A is a positive or monotone linear operator.

REFERENCES

- C. Corduneanu, Almost Periodic Functions, 2nd ed., Chelsea Publishing, New York, 1989.
 Zbl 0672.42008.
- [2] G. M. N'Guerekata, Remarques sur les solutions presque-périodiques de l'équation [(d/dt) A]x = 0 [Remarks on the almost-periodic solutions of the equation [(d/dt) A]x = 0], Canad. Math. Bull. **25** (1982), no. 1, 121–123 (French). MR 84b:34087. Zbl 484.34030.

- [3] ______, Almost-periodicity in linear topological spaces and applications to abstract differential equations, Int. J. Math. Math. Sci. 7 (1984), no. 3, 529-540. MR 86c:34125. Zbl 561.34045.
- [4] ______, Almost automorphy, almost periodicity and stability of motions in Banach spaces, Forum Math. 13 (2001), no. 4, 581–588. CMP 1 830 248.

GASTON M. N'GUEREKATA: DEPARTMENT OF MATHEMATICS, MORGAN STATE UNIVERSITY, BALTIMORE, MD 21251, USA

 $\textit{E-mail address} : \verb"gnguerek@morgan.edu"$