
IJMMS 28:4 (2001) 223–230
PII. S0161171201006287

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

PROPER CONTRACTIONS AND INVARIANT SUBSPACES
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Abstract. Let T be a contraction and A the strong limit of {T∗nTn}n≥1. We prove the
following theorem: if a hyponormal contraction T does not have a nontrivial invariant
subspace, then T is either a proper contraction of class �00 or a nonstrict proper contrac-
tion of class �10 for which A is a completely nonprojective nonstrict proper contraction.
Moreover, its self-commutator [T∗,T ] is a strict contraction.
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1. Introduction. Let � be an infinite-dimensional complex Hilbert space. By an op-

erator on � we mean a bounded linear transformation of � into itself. The null opera-

tor and the identity on � will be denoted by O and I, respectively. If T is an operator,

then T∗ is its adjoint, and ‖T∗‖ = ‖T‖. The null space (kernel) of T , which is the sub-

space of �, will be denoted by �(T). A contraction is an operator T such that ‖T‖ ≤ 1

(i.e., ‖Tx‖ ≤ ‖x‖ for every x in � or, equivalently, T∗T ≤ I). A strict contraction is

an operator T such that ‖T‖ < 1 (i.e., sup0�=x(‖Tx‖/‖x‖) < 1; equivalently, T∗T ≺ I,
which means that T∗T ≤ γI for some γ ∈ (0,1)). An isometry is a contraction for

which ‖Tx‖ = ‖x‖ for every x in � (i.e., T∗T = I so that ‖T‖ = 1).

We summarize below some well-known results on contractions that will be applied

throughout (cf. [16, page 40], [5, 9, 10, 11, 13], and [8, Chapter 3]). If T is a contraction,

then T∗nTn s
�����������������→ A. That is, the sequence {T∗nTn}n≥1 of operators on � converges

strongly to an operator A on �, which means that ‖(T∗nTn−A)x‖ → 0 for every x
in �. Moreover, A is a nonnegative contraction (i.e., O ≤ A ≤ I), ‖A‖ = 1 whenever

A �= O, T∗nATn = A for every integer n ≥ 1 (so that T is an isometry if and only if

A = I), ‖Tnx‖ → ‖A1/2x‖ for every x in �, and the null spaces of A and I−A, viz.

�(A)= {x ∈� :Ax = 0} and �(I−A)= {x ∈� :Ax = x}, are given by

�(A)= {x ∈� : Tnx �→ 0
}
,

�(I−A)= {x ∈� :
∥∥Tnx

∥∥= ‖x‖ ∀n≥ 1
}

= {x ∈� : ‖Ax‖ = ‖x‖}.
(1.1)

Recall that T is a contraction if and only if T∗ is. Thus TnT∗n s
�����������������→A∗, whereO ≤A∗ ≤ I,

‖A∗‖=1 wheneverA∗ �=O, TnA∗T∗n=A∗ for everyn≥1 (so that T is a co-isometry—

i.e., T∗ is an isometry—if and only if A∗ = I), ‖T∗nx‖→ ‖A1/2
∗ x‖ for every x in �, and

�
(
A∗
)= {x ∈� : T∗nx �→ 0

}
,

�
(
I−A∗

)= {x ∈� :
∥∥T∗nx

∥∥= ‖x‖ ∀n≥ 1
}

= {x ∈� :
∥∥A∗x

∥∥= ‖x‖}.
(1.2)
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An operator T on � is uniformly stable if the power sequence {Tn}n≥1 converges

uniformly to the null operator (i.e., ‖Tn‖→ 0). It is strongly stable if {Tn}n≥1 converges

strongly to the null operator (i.e., ‖Tnx‖ → 0 for every x in �), and weakly stable if

{Tn}n≥1 converges weakly to the null operator (i.e., 〈Tnx;y〉 → 0 for every x,y ∈ �

or, equivalently, 〈Tnx ;x〉 → 0 for every x ∈�). It is clear that uniform stability implies

strong stability, which implies weak stability. The converses fail (a unilateral shift is

a weakly stable isometry and its adjoint is a strongly stable co-isometry) but hold for

compact operators. T is uniformly stable if and only if T∗ is uniformly stable, and

T is weakly stable if and only if T∗ is weakly stable. However, strong convergence

is not preserved under the adjoint operation so that strong stability for T does not

imply strong stability for T∗ (and vice versa). If T is a strongly stable contraction

(i.e., if �(A) = �, which means that A = O), then it is usual to say that T is a �0·-
contraction. If T∗ is a strongly stable contraction (i.e., if �(A∗) = �, which means

that A∗ = O), then T is a �·0-contraction. On the other extreme, if a contraction T
is such that Tnx � 0 for every nonzero vector x in � (i.e., if �(A) = {0}), then it is

said to be a �1·-contraction. Dually, if a contraction T is such that T∗nx� 0 for every

nonzero vector x in � (i.e., if �(A∗)= {0}), then it is a �·1-contraction. These are the

Nagy-Foiaş classes of contractions (see [16, page 72]). All combinations are possible

leading to classes �00, �01, �10, and �11. In particular, T and T∗ are both strongly

stable contractions if and only if T is of class �00. Generally,

T ∈�00 ⇐⇒A=A∗ =O,
T ∈�01 ⇐⇒A=O, �(A∗)= {0},
T ∈�10 ⇐⇒�(A)= {0}, A∗ =O,
T ∈�11 ⇐⇒�(A)=�(A∗)= {0}.

(1.3)

If T is a strict contraction, then it is uniformly stable, and hence of class �00. Thus,

a contraction not in �00 is necessarily nonstrict (i.e., if T ∉ �00, then ‖T‖ = 1). In

particular, contractions in �1· or in �·1 are nonstrict.

2. Proper contractions. An operator T is a proper contraction if ‖Tx‖ < ‖x‖ for

every nonzero x in � or, equivalently, if T∗T < I. The terms “strict” and “proper”

contractions are sometimes interchanged in current literature. We adopt the termi-

nology of [7, page 82] for strict contraction. Obviously, every strict contraction is a

proper contraction, every proper contraction is a contraction, and the converses fail:

any isometry is a contraction but not a proper contraction, and the diagonal operator

T = diag{(k+1)(k+2)−1}∞k=0 is a proper contraction on �2
+ but not a strict contrac-

tion. Thus, proper contractions comprise a class of operators that is properly included

in the class of all contractions and properly includes the class of all strict contrac-

tions. If T is a proper contraction, then so is T∗T (reason: ST is a proper contraction

whenever S is a contraction and T is a proper contraction). Thus, the point spectrum

σP(T∗T) lies in the open unit disc. If, in addition, T is compact, then so is T∗T and

hence its spectrum σ(T∗T), which is always closed, also lies in the open unit disc (for

σ(K)\{0} = σP(K)\{0} whenever K is compact). This implies that the spectral radius

r(T∗T) is less than one. Therefore, ‖T‖2 = r(T∗T) < 1.
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Conclusion. The concepts of proper and strict contraction coincide for compact

operators.

Proper contractions have been investigated in connection with unitary dilations (the

minimal unitary dilation of a proper contraction is a bilateral shift whose multiplicity

does not exceed the dimension of �—see [16, page 91]), and also with strong stability of

contractive semigroups (cf. [1]). They were further investigated in [15] by considering

different topologies in �. Here are three basic properties of proper contractions that

will be needed in the sequel.

Proposition 2.1. T is a proper contraction if and only if T∗ is a proper contraction.

Proof. Recall that ‖T∗x‖2 = 〈T∗x;T∗x〉 = 〈TT∗x ;x〉 ≤ ‖TT∗x‖‖x‖ for every x
in �, for all operators T on �. Take an arbitrary nonzero vectorx in �. If T∗x = 0, then

‖T∗x‖ < ‖x‖ trivially. On the other hand, if T∗x �= 0 and T is a proper contraction,

then ‖TT∗x‖ < ‖T∗x‖ �= 0 so that ‖T∗x‖2 < ‖T∗x‖‖x‖, and hence ‖T∗x‖ < ‖x‖.
That is, T∗ is a proper contraction. Dually, since T∗∗ = T , it follows that T is a proper

contraction whenever T∗ is.

If S is a contraction and T is a proper contraction, then ST is a proper contraction

(as we have already seen above) and so is S∗T∗ by Proposition 2.1. Another application

of Proposition 2.1 ensures that TS = (S∗T∗)∗ is still a proper contraction. Summing

up: left or right product of a contraction and a proper contraction is again a proper

contraction.

Proposition 2.2. Every proper contraction is weakly stable.

Proof. If ‖Tx‖< ‖x‖ for every nonzero x in �, then T is completely nonisomet-

ric (i.e., there is no nonzero reducing subspace � for T such that ‖Tnx‖ = ‖x‖ for

every x ∈� and every n≥ 1), and therefore completely nonunitary. But a completely

nonunitary contraction is weakly stable. In fact, the Foguel decomposition for con-

tractions says that every contraction is the direct sum of a weakly stable contraction

and a unitary operator (cf. [6, page 55] or [8, page 106]).

The converse of Proposition 2.2 fails: shifts are weakly stable isometries. However,

as it was raised in [1], a proper contraction is not necessarily strongly stable. Indeed, if T
is the weighted unilateral shift T = shift{(k+1)1/2(k+2)−1(k+3)1/2}∞k=0 on �2

+, which

is a proper contraction because (k+1)(k+2)−2(k+3) < 1 for every k ≥ 0, then A is

the diagonal operator A = diag{(k+1)(k+2)−1}∞k=0 �=O (cf. [10] or [8, pages 51, 52])

so that T is not strongly stable. As a matter of fact, �(A) = {0} and (as it is read-

ily verified) A∗ = O. Hence T is a proper contraction of class �10. The converse is

much simpler: strongly stable contractions are not necessarily proper contractions. For

instance, a backward unilateral shift S∗+ is a strongly stable co-isometry (in fact, an

operator is a strongly stable co-isometry if and only if it is a backward unilateral shift).

Thus S∗+ is a strongly stable contraction but not a proper contraction (it is a nonproper

contraction of class �01). Actually, even a �00-contraction is not necessarily a proper

contraction. For example, the weighted bilateral shift T = shift{(|k| +1)−1}∞k=−∞ on

�2 is a contraction of class �00 (reason:
∏n
k=0(|k| + 1)−1 = (n!)−1 → 0 as n → ∞,

which means that both products
∏∞
k=0(|k| + 1)−1 and

∏0
k=−∞(|k| + 1)−1 diverge to
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0—see [3, page 181]) but not a proper contraction because (|k|+1)−1 = 1 for k = 0.

It is worth noticing that the weighted bilateral shift T = shift{1−(|k|+2)−2}∞k=−∞ on

�2 is a proper contraction of class �11. Indeed, 0< 1−(|k|+2)−2 < 1 for each integer

k, and both products
∏∞
k=0(1−(|k|+2)−2) and

∏0
k=−∞(1−(|k|+2)−2) do not diverge

to 0 (cf. [3, page 181] again)—these products converge once the series
∑∞
k=0(|k|+2)−2

converges.

Proposition 2.3. If T is a proper contraction, then A is a proper contraction.

Proof. Let T be a proper contraction and take an arbitrary nonzero vector x in

�. If Tmx = 0 for some m ≥ 1, then Tnx = 0 for every integer n ≥m. If Tnx �= 0

for every integer n≥ 1, then ‖Tn+1x‖ = ‖TTnx‖< ‖Tnx‖< ‖x‖ so that {‖Tnx‖}n≥1

is a strictly decreasing sequence of positive numbers. In the former case T is triv-

ially strongly stable so that A = O is a trivial proper contraction. In the latter case

{‖Tnx‖}n≥1 converges in the real line to ‖A1/2x‖ so that ‖A1/2x‖< ‖x‖. Thus ‖Ax‖ ≤
‖A1/2x‖< ‖x‖.

A backward unilateral shift shows that the converse of Proposition 2.3 does not

hold true as well (i.e., there exist nonproper contractions T for which A is a proper

contraction).

3. Invariant subspaces. A subspace � of � is a closed linear manifold of �. � is

nontrivial if {0} �=� �=�. If T is an operator on � and T(�)⊆�, then � is invariant

for T (or � is T -invariant). If � is a nontrivial invariant subspace for T , then its

orthogonal complement �⊥ is a nontrivial invariant subspace for T∗. If � is invariant

for both T and T∗ (equivalently, if both � and �⊥ are T -invariant), then � reduces

T . A classical open question in operator theory is: does a contraction not in �00 have

a nontrivial invariant subspace? Although this is still an unsolved problem we know

that the following result holds true.

Lemma 3.1. If a contraction has no nontrivial invariant subspace, then it is either a

�00, a �01, or a �10-contraction.

Proof. See, for instance, [8, page 71].

The class of contractions T for which A is a projection was investigated in [4, 10]. It

coincides with the class of all contractions T that commute with A; that is, A=A2 if

and only ifAT = TA (cf. [4]). Equivalently, �(A−A2)=� if and only if �(AT−TA)=�.

The next proposition extends this equivalence.

Proposition 3.2. �(A−A2) is the largest subspace of � that is included in �(AT−
TA) and is T -invariant.

Proof. See [10] (or [8, page 52]).

We will say that A is completely nonprojective if Ax �= A2x for every nonzero x
in � (i.e., if �(A−A2) = {0}). Since �(A−A2) reduces the selfadjoint operator A,

this means that no nonzero direct summand of A is a projection. If A is completely

nonprojective, then T is a �1·-contraction (for �(A)⊆�(A−A2)).
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Lemma 3.3. If a contraction T has no nontrivial invariant subspace, then either T is

strongly stable or A is a completely nonprojective nonstrict proper contraction.

Proof. Suppose that T is a contraction without a nontrivial invariant subspace.

Since �(A−A2) is an invariant subspace for T (by Proposition 3.2), it follows that

either �(A−A2) = � or �(A−A2) = {0}. In the former case A is a projection (i.e.,

A = A2). However, as it was shown in [10], if A is a projection then T is the direct

sum of a strongly stable contraction G, a unilateral shift S+, and a unitary operator

U , where any of the direct summands of the decomposition

T =G⊕S+⊕U (3.1)

may be missing (see also [8, page 83]). But T has no nontrivial invariant subspace so

that T =G. That is, T is a strongly stable contraction, for S+ and U clearly have non-

trivial invariant subspaces (isometries have nontrivial invariant subspaces). In the lat-

ter case A is a completely nonprojective proper contraction. Indeed, {x ∈� : ‖Ax‖ =
‖x‖} =�(I−A)⊆�(A−A2)= {0}. Finally, the contractionA is not strict (i.e., ‖A‖ = 1)

whenever T is not strongly stable (i.e., whenever A �=O).

Another classical open question in operator theory is: does a hyponormal operator

have a nontrivial invariant subspace? Recall that an operator T on � is hyponormal if

TT∗ ≤ T∗T (equivalently, if ‖T∗x‖ ≤ ‖Tx‖ for every x in �), and T is cohyponormal

if T∗ is hyponormal. Here is a consequence of Lemmas 3.1 and 3.3 for hyponormal

contractions. It uses the fact that a cohyponormal contraction T is such that A is a

projection. This implies that a completely nonunitary cohyponormal contraction is

strongly stable (cf. [9, 12, 14]).

Theorem 3.4. If a hyponormal contraction T has no nontrivial invariant subspace,

then it is either a �00-contraction or a �10-contraction for which A is a completely

nonprojective nonstrict proper contraction.

Proof. If T has no nontrivial invariant subspace, then T∗ has no nontrivial invari-

ant subspace. If T is a contraction, then Lemmas 3.1 and 3.3 ensure that either A =
A∗ =O,A=O andA∗ is a completely nonprojective nonstrict proper contraction, orA
is a completely nonprojective nonstrict proper contraction and A∗ =O. However, if T
is hyponormal, then A∗ is a projection [9] so that A∗ =O (see also [8, page 78]).

Can the conclusion in Theorem 3.4 be sharpened to T ∈�00? In other words, does a

hyponormal contraction not in �00 have a nontrivial invariant subspace? The question

has an affirmative answer if we replace “�00-contraction” with “proper contraction.”

That is, if a hyponormal contraction is not a proper contraction, then it has a nontrivial

invariant subspace. This will be proved in Theorem 3.6 below, but first we consider

the following auxiliary result. Let D denote the self-commutator of T ; that is,

D = [T∗,T ]= T∗T −TT∗. (3.2)

Thus, a hyponormal is precisely an operator T for whichD is nonnegative (i.e.,D ≥O).

Proposition 3.5. If T is a hyponormal contraction, then D is a contraction whose

power sequence converges strongly. If P is the strong limit of {Dn}n≥1, then PT =O.
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Proof. Take an arbitrary x in � and an arbitrary nonnegative integer n. Suppose

that T is hyponormal and let R =D1/2 ≥O be the unique nonnegative square root of

D ≥O. If, in addition, T is a contraction, then

〈
Dn+1x;x

〉=
∥∥Rn+1x

∥∥2 = 〈DRnx;Rnx
〉

=
∥∥TRnx

∥∥2−
∥∥T∗Rnx

∥∥2

≤
∥∥Rnx

∥∥2−
∥∥T∗Rnx

∥∥2 ≤
∥∥Rnx

∥∥2

= 〈Dnx;x
〉
.

(3.3)

This shows that R (and so D) is a contraction: set n = 0 above. It also shows that

{Dn}n≥1 is a decreasing sequence of nonnegative contractions. Since a bounded mono-

tone sequence of selfadjoint operators converges strongly,

Dn s
����������������������������������→ P ≥O. (3.4)

Indeed, the strong limit P of {Dn}n≥1 is nonnegative, for the set of all nonnegative

operators on � is weakly (thus strongly) closed. As a matter of fact, P = P2 (the weak

limit of any weakly convergent power sequence is idempotent) and so P ≥ O is a

projection. Moreover,

m∑

n=0

‖T∗Rnx‖2 ≤
m∑

n=0

(∥∥Rnx
∥∥2−

∥∥Rn+1x
∥∥2)= ‖x‖2−

∥∥Rm+1x
∥∥2 ≤ ‖x‖2 (3.5)

for all m≥ 0 so that ‖T∗Rnx‖→ 0 as n→∞. Hence

T∗Px = T∗ lim
n
Dnx = lim

n
T∗R2nx = 0 (3.6)

for every x in �, and therefore PT =O (since P is selfadjoint).

Theorem 3.6. If a hyponormal contraction has no nontrivial invariant subspace,

then it is a proper contraction and its self-commutator is a strict contraction.

Proof. (a) Take an arbitrary operator T on � and an arbitrary x in �. Note that

T∗Tx = ‖T‖2x if and only if ‖Tx‖ = ‖T‖‖x‖. (3.7)

Indeed, if T∗Tx = ‖T‖2x, then ‖Tx‖2 = 〈T∗Tx;x〉 = ‖T‖2‖x‖2. Conversely, if ‖Tx‖ =
‖T‖‖x‖, then 〈T∗Tx;‖T‖2x〉 = ‖T‖4‖x‖2, and hence

∥∥T∗Tx−‖T‖2x
∥∥2 =

∥∥T∗Tx
∥∥2−2Re

〈
T∗Tx;‖T‖2x

〉+‖T‖4‖x‖2

=
∥∥T∗Tx

∥∥2−‖T‖4‖x‖2 ≤ (
∥∥T∗T

∥∥2−‖T‖4)‖x‖2 = 0.
(3.8)

Put � = {x ∈� : ‖Tx‖ = ‖T‖‖x‖} = �(‖T‖2I−T∗T), which is a subspace of �. If T
is hyponormal, then � is T -invariant. In fact, if T is hyponormal and x ∈�, then

∥∥T(Tx)
∥∥≤ ‖T‖‖Tx‖ =

∥∥‖T‖2x
∥∥=

∥∥T∗Tx
∥∥≤

∥∥T(Tx)
∥∥ (3.9)
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and so Tx ∈� (see also [6, page 9]). Now let T be a hyponormal contraction. If ‖T‖< 1,

then it is trivially a proper contraction. If ‖T‖ = 1 and T has no nontrivial invariant

subspace, then � = {x ∈ � : ‖Tx‖ = ‖x‖} = {0} (actually, if � = �, then T is an

isometry, and isometries have invariant subspaces). Hence T is a proper contraction.

(b) Let D ≥ O be the self-commutator of a hyponormal contraction T and let P
be the strong limit of {Dn}n≥1 so that PT = O (cf. Proposition 3.5). Suppose T has

no nontrivial invariant subspace. Since �(P) is a nonzero invariant subspace for T
whenever PT = O and T �= O, it follows that �(P) = �. Hence P = O and so D is

strongly stable (Dn s
�����������������→O). Moreover, since

∨{Tnx}n≥0 is a nonzero invariant subspace

for T whenever x �= 0, it follows that
∨{Tnx}n≥0 = � for each x �= 0 (every nonzero

vector in � is a cyclic vector for T ). Thus the Berger-Shaw theorem (see, for instance,

[2, page 152]) ensures that D is a trace-class operator so that D is compact (i.e., T is

essentially normal). But for compact operators strong stability coincides with uniform

stability, and uniform stability always means spectral radius less than one. Hence

the nonnegative D is a strict contraction because it is clearly normaloid (i.e., ‖D‖ =
r(D) < 1).

Remark 3.7. According to the Berger-Shaw theorem, a hyponormal contraction

without a nontrivial invariant subspace has a trace-class self-commutatorDwith trace-

norm ‖D‖1 ≤ 1. If D �=O is not a rank-one operator, then ‖D‖< ‖D‖1 ≤ 1. The above

argument ensures the inequality ‖D‖< 1 whenever a hyponormal contraction has no

nontrivial invariant subspace, including the case of a hyponormal contraction with a

rank-one self-commutator.

An operator is seminormal if it is hyponormal or cohyponormal. Recall that T∗ has

a nontrivial invariant subspace if and only if T has, T∗ is a proper contraction if and

only if T is (Proposition 2.1), and [T ,T∗] = −[T∗,T ]. Thus, the above theorem also

holds for cohyponormal contractions. If a seminormal contraction has no nontrivial

invariant subspace, then it is a proper contraction and its self-commutator is a strict

contraction. This prompts the question: can we drop “hyponormal” from the theorem

statement? In particular, is it true that every nonproper contraction has a nontrivial

invariant subspace? Theorems 3.4 and 3.6 yield the following result.

Corollary 3.8. If a hyponormal contraction T has no nontrivial invariant subspace,

then it is either a proper contraction of class �00 or a nonstrict proper contraction

of class �10 for which A is a completely nonprojective nonstrict proper contraction.

Moreover, its self-commutator [T∗,T ] is a strict contraction.
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