ON θ -precontinuous functions

TAKASHI NOIRI

(Received 16 January 2001)

ABSTRACT. We introduce a new class of functions called θ -precontinuous functions which is contained in the class of weakly precontinuous (or almost weakly continuous) functions and contains the class of almost precontinuous functions. It is shown that the θ precontinuous image of a *p*-closed space is quasi *H*-closed.

2000 Mathematics Subject Classification. 54C08.

1. Introduction. A subset *A* of a topological space *X* is said to be preopen [14] or nearly open [26] if $A \subset Int(Cl(A))$. A function $f: X \to Y$ is called precontinuous [14] if the preimage $f^{-1}(V)$ of each open set *V* of *Y* is preopen in *X*. Precontinuity was called near continuity by Pták [26] and also called almost continuity by Frolík [9] and Husain [10]. In 1985, Janković [12] introduced almost weak continuity as a weak form of precontinuity. Popa and Noiri [23] introduced weak precontinuity and showed that almost weak continuity is equivalent to weak precontinuous and obtained the further properties of quasi precontinuity. Recently, Nasef and Noiri [16] have introduced and investigated the notion of almost precontinuity. Quite recently, Jafari and Noiri [11] investigated the further properties of almost precontinuous functions.

In this paper, we introduce a new class of functions called θ -precontinuous functions which is contained in the class of weakly precontinuous functions and contains the class of almost precontinuous functions. We obtain basic properties of θ -precontinuous functions. It is shown in the last section that the θ -precontinuous images of *p*-closed (resp., β -connected) spaces are quasi *H*-closed (resp., semiconnected).

2. Preliminaries. Throughout, by (X, τ) and (Y, σ) (or simply *X* and *Y*) we denote topological spaces. Let *S* be a subset of *X*. We denote the interior and the closure of *S* by Int(*S*) and Cl(*S*), respectively. A subset *S* is said to be *preopen* [14] (resp., *semi-open* [13], α -*open* [17]) if $S \subset \text{Int}(\text{Cl}(S))$ (resp., $S \subset \text{Cl}(\text{Int}(S))$, $S \subset \text{Int}(\text{Cl}(\text{Int}(S)))$). The complement of a preopen set is called *preclosed*. The intersection of all preclosed sets containing *S* is called the *preclosure* [8] of *S* and is denoted by pCl(*S*). The *preinterior* of *S* is defined by the union of all preopen sets contained in *S* and is denoted by pInt(*S*). The family of all preopen sets of *X* is denoted by PO(*X*). We set PO(*X*, *x*) = {*U* : $x \in U$ and $U \in \text{PO}(X)$ }. A point *x* of *X* is called a θ -cluster point of *S* if Cl(U) $\cap S \neq \emptyset$ for every open set *U* of *X* containing *x*. The set of all θ -cluster points of *S* is called the θ -closure of *S* and is denoted by Cl_{θ}(*S*). The complement of a θ -closed set is said to be θ -closed [27] if $S = \text{Cl}_{\theta}(S)$. The complement of a θ -closed set is said to be θ -open. A point *x* of *X*

is called a *pre* θ -*cluster* point of *S* if pCl(*U*) $\cap S \neq \emptyset$ for every preopen set *U* of *X* containing *x*. The set of all pre θ -cluster points of *S* is called the *pre* θ -*closure* of *S* and is denoted by pCl_{θ}(*S*). A subset *S* is said to be *pre* θ -*closed* [20] if *S* = pCl_{θ}(*S*). The complement of a pre θ -closed set is said to be *pre* θ -*open*.

DEFINITION 2.1. A function $f : X \to Y$ is said to be *precontinuous* [14] (resp., *almost precontinuous* [16], *weakly precontinuous* [23] or *quasi precontinuous* [21]) if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in PO(X, x)$ such that $f(U) \subset V$ (resp., $f(U) \subset Int(Cl(V)), f(U) \subset Cl(V)$).

DEFINITION 2.2. A function $f : X \to Y$ is said to be *almost weakly continuous* [12] if $f^{-1}(V) \subset Int(Cl(f^{-1}(Cl(V))))$ for every open set *V* of *Y*.

DEFINITION 2.3. A function $f : X \to Y$ is said to be *strongly* θ -*precontinuous* [19] if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subset V$.

DEFINITION 2.4. A function $f : X \to Y$ is said to be θ -precontinuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subset Cl(V)$.

REMARK 2.5. By the above definitions and Theorem 3.3 below, we have the following implications and none of these implications is reversible by [19, Example 2.2], [11, Example 2.9], and Examples 2.6 and 5.11 below.

strongly
$$\theta$$
-precontinuous \Rightarrow precontinuous
 $\Rightarrow \theta$ -precontinuous \Rightarrow weakly precontinuous. (2.1)

EXAMPLE 2.6. This example is due to Arya and Deb [4]. Let *X* be the set of all real numbers. The topology τ on *X* is the cocountable topology. Let $Y = \{a, b, c\}$, $\sigma = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. We define a function $f : (X, \tau) \to (Y, \sigma)$ by f(x) = a if *x* is rational; f(x) = b if *x* is irrational. Then *f* is a θ -precontinuous function which is not almost precontinuous

3. Characterizations

THEOREM 3.1. For a function $f : X \to Y$ the following properties are equivalent:

- (1) f is θ -precontinuous;
- (2) $pCl_{\theta}(f^{-1}(B)) \subset f^{-1}(Cl_{\theta}(B))$ for every subset *B* of *Y*;
- (3) $f(pCl_{\theta}(A)) \subset Cl_{\theta}(f(A))$ for every subset A of X.

PROOF. (1) \Rightarrow (2). Let *B* be any subset of *Y*. Suppose that $x \notin f^{-1}(\operatorname{Cl}_{\theta}(B))$. Then $f(x) \notin \operatorname{Cl}_{\theta}(B)$ and there exists an open set *V* containing f(x) such that $\operatorname{Cl}(V) \cap B = \emptyset$. Since *f* is θ .*p.c.*, there exists $U \in \operatorname{PO}(X, x)$ such that $f(\operatorname{pCl}(U)) \subset \operatorname{Cl}(V)$. Therefore, we have $f(\operatorname{pCl}(U)) \cap B = \emptyset$ and $\operatorname{pCl}(U) \cap f^{-1}(B) = \emptyset$. This shows that $x \notin \operatorname{pCl}_{\theta}(f^{-1}(B))$. Thus, we obtain $\operatorname{pCl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$.

 $(2)\Rightarrow(3)$. Let *A* be any subset of *X*. Then we have $pCl_{\theta}(A) \subset pCl_{\theta}(f^{-1}(f(A))) \subset f^{-1}(Cl_{\theta}(f(A)))$ and hence $f(pCl_{\theta}(A)) \subset Cl_{\theta}(f(A))$.

 $(3)\Rightarrow(2)$. Let *B* be a subset of *Y*. We have $f(pCl_{\theta}(f^{-1}(B))) \subset Cl_{\theta}(f(f^{-1}(B))) \subset Cl_{\theta}(B)$ and hence $pCl_{\theta}(f^{-1}(B)) \subset f^{-1}(Cl_{\theta}(B))$.

 $(2)\Rightarrow(1)$. Let $x \in X$ and V be an open set of Y containing f(x). Then we have $Cl(V) \cap (Y - Cl(V)) = \emptyset$ and $f(x) \notin Cl_{\theta}(Y - Cl(V))$. Hence, $x \notin f^{-1}(Cl_{\theta}(Y - Cl(V)))$ and $x \notin pCl_{\theta}(f^{-1}(Y - Cl(V)))$. There exists $U \in PO(X, x)$ such that $pCl(U) \cap f^{-1}(Y - Cl(V)) = \emptyset$; hence $f(pCl(U)) \subset Cl(V)$. Therefore, f is $\theta.p.c$.

THEOREM 3.2. For a function $f : X \to Y$ the following properties are equivalent:

- (1) f is θ -precontinuous;
- (2) $f^{-1}(V) \subset \operatorname{pInt}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$ for every open set *V* of *Y*;

(3) $pCl_{\theta}(f^{-1}(V)) \subset f^{-1}(Cl(V))$ for every open set V of Y.

PROOF. (1) \Rightarrow (2). Suppose that *V* is any open set of *Y* and $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subset Cl(V)$. Therefore, $x \in U \subset pCl(U) \subset f^{-1}(Cl(V))$. This shows that $x \in pInt_{\theta}(f^{-1}(Cl(V)))$. Therefore, we obtain $f^{-1}(V) \subset pInt_{\theta}(f^{-1}(Cl(V)))$.

(2)⇒(3). Suppose that *V* is any open set of *Y* and $x \notin f^{-1}(\operatorname{Cl}(V))$. Then $f(x) \notin$ Cl(*V*) and there exists an open set *W* containing f(x) such that $W \cap V = \emptyset$; hence Cl(*W*) ∩ *V* = \emptyset . Therefore, we have $f^{-1}(\operatorname{Cl}(W)) \cap f^{-1}(V) = \emptyset$. Since $x \in f^{-1}(W)$, by (2) $x \in \operatorname{pInt}_{\theta}(f^{-1}(\operatorname{Cl}(W)))$. There exists $U \in \operatorname{PO}(X, x)$ such that $\operatorname{pCl}(U) \subset f^{-1}(\operatorname{Cl}(W))$. Thus we have $\operatorname{pCl}(U) \cap f^{-1}(V) = \emptyset$ and hence $x \notin \operatorname{pCl}_{\theta}(f^{-1}(V))$. This shows that $\operatorname{pCl}_{\theta}(f^{-1}(\operatorname{Cl}(V)) \subset f^{-1}(\operatorname{Cl}(V))$.

(3)⇒(1). Suppose that $x \in X$ and V is any open set of Y containing f(x). Then $V \cap (Y - \operatorname{Cl}(V)) = \emptyset$ and $f(x) \notin \operatorname{Cl}(Y - \operatorname{Cl}(V))$. Therefore, $x \notin f^{-1}(\operatorname{Cl}(Y - \operatorname{Cl}(V)))$ and by (3) $x \notin \operatorname{pCl}_{\theta}(f^{-1}(Y - \operatorname{Cl}(V)))$. There exists $U \in \operatorname{PO}(X, x)$ such that $\operatorname{pCl}(U) \cap f^{-1}(Y - \operatorname{Cl}(V)) = \emptyset$. Therefore, we obtain $f(\operatorname{pCl}(U)) \subset \operatorname{Cl}(V)$. This shows that f is $\theta.p.c.$ □

THEOREM 3.3. For a function $f: X \to Y$ the following properties hold:

(1) *if* f *is almost precontinuous, then it is* θ *-precontinuous;*

(2) if f is θ -precontinuous, then it is weakly precontinuous.

PROOF. Statement (2) is obvious. We will show statement (1). Suppose that $x \in X$ and V is any open set of Y containing f(x). Since f is almost precontinuous, $f^{-1}(\text{Int}(\text{Cl}(V)))$ is preopen and $f^{-1}(\text{Cl}(V))$ is preclosed in X by [16, Theorem 3.1]. Now, set $U = f^{-1}(\text{Int}(\text{Cl}(V)))$. Then we have $U \in \text{PO}(X, x)$ and $\text{pCl}(U) \subset f^{-1}(\text{Cl}(V))$. Therefore, we obtain $f(\text{pCl}(U)) \subset \text{Cl}(V)$. This shows that f is $\theta.p.c$.

COROLLARY 3.4. Let *Y* be a regular space. Then, for a function $f : X \to Y$ the following properties are equivalent:

- (1) f is strongly θ -precontinuous;
- (2) f is precontinuous;
- (3) f is almost precontinuous;
- (4) f is θ -precontinuous;
- (5) f is weakly precontinuous.

PROOF. This is an immediate consequence of [19, Theorem 3.2].

DEFINITION 3.5. A topological space *X* is said to be *pre-regular* [20] if for each preclosed set *F* and each point $x \in X - F$, there exist disjoint preopen sets *U* and *V* such that $x \in U$ and $F \subset V$.

LEMMA 3.6 (see [20]). A topological space X is pre-regular if and only if for each $U \in$ PO(X) and each point $x \in U$, there exists $V \in$ PO(X, x) such that $x \in V \subset$ pCl(V) $\subset U$.

THEOREM 3.7. Let *X* be a pre-regular space. Then $f : X \to Y$ is θ .p.c. if and only if it is weakly precontinuous.

PROOF. Suppose that *f* is weakly precontinuous. Let $x \in X$ and *V* is any open set of *Y* containing f(x). Then, there exists $U \in PO(X, x)$ such that $f(U) \subset Cl(V)$. Since *X* is pre-regular, there exists $U_* \in PO(X, x)$ such that $x \in U_* \subset pCl(U_*) \subset U$. Therefore, we obtain $f(pCl(U_*)) \subset Cl(V)$. This shows that *f* is $\theta.p.c$.

THEOREM 3.8. Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for each $x \in X$. Then g is θ .p.c. if and only if f is θ .p.c.

Proof

NECESSITY. Suppose that *g* is θ .*p.c.* Let $x \in X$ and *V* be an open set of *Y* containing f(x). Then $X \times V$ is an open set of $X \times Y$ containing g(x). Since *g* is θ .*p.c.*, there exists $U \in PO(X, x)$ such that $g(pCl(U)) \subset Cl(X \times V)$. It follows that $Cl(X \times V) = X \times Cl(V)$. Therefore, we obtain $f(pCl(U)) \subset Cl(V)$. This shows that *f* is θ .*p.c*.

SUFFICIENCY. Let $x \in X$ and W be any open set of $X \times Y$ containing g(x). There exist open sets $U_1 \subset X$ and $V \subset Y$ such that $g(x) = (x, f(x)) \in U_1 \times V \subset W$. Since f is $\theta.p.c.$, there exists $U_2 \in PO(X, x)$ such that $f(pCl(U_2)) \subset Cl(V)$. Let $U = U_1 \cap U_2$, then $U \in PO(X, x)$. Therefore, we obtain $g(pCl(U)) \subset Cl(U_1) \times f(pCl(U_2)) \subset Cl(U_1) \times Cl(V) \subset Cl(W)$. This shows that g is $\theta.p.c$.

4. Some properties

LEMMA 4.1 (see [15]). Let A and X_0 be subsets of a space X. (1) If $A \in PO(X)$ and X_0 is semi-open in X, then $A \cap X_0 \in PO(X_0)$. (2) If $A \in PO(X_0)$ and $X_0 \in PO(X)$, then $A \in PO(X)$.

LEMMA 4.2 (see [7]). Let A and X_0 be subsets of a space X such that $A \subset X_0 \subset X$. Let $pCl_{X_0}(A)$ denote the preclosure of A in the subspace X_0 .

(1) If X_0 is semi-open in X, then $pCl_{X_0}(A) \subset pCl(A)$.

(2) If $A \in PO(X_0)$ and $X_0 \in PO(X)$, then $pCl(A) \subset pCl_{X_0}(A)$.

THEOREM 4.3. If $f : X \to Y$ is $\theta.p.c.$ and X_0 is a semi-open subset of X, then the restriction $f/X_0 : X_0 \to Y$ is $\theta.p.c$.

PROOF. For any $x \in X_0$ and any open neighborhood V of f(x), there exists $U \in$ PO(X, x) such that $f(pCl(U)) \subset Cl(V)$ since f is $\theta.p.c$. Put $U_0 = U \cap X_0$, then by Lemmas 4.1 and 4.2 $U_0 \in PO(X_0, x)$ and $pCl_{X_0}(U_0) \subset pCl(U_0)$. Therefore, we obtain

$$(f/X_0)(pCl_{X_0}(U_0)) = f(pCl_{X_0}(U_0)) \subset f(pCl(U_0)) \subset f(pCl(U)) \subset Cl(V).$$
(4.1)

This shows that f/X_0 is $\theta.p.c$.

THEOREM 4.4. A function $f : X \to Y$ is $\theta.p.c.$ if for each $x \in X$ there exists $X_0 \in PO(X, x)$ such that the restriction $f/X_0 : X_0 \to Y$ is $\theta.p.c.$

PROOF. Let $x \in X$ and V be any open neighborhood of f(x). There exists $X_0 \in$ PO(X, x) such that $f/X_0 : X_0 \to Y$ is $\theta.p.c$. Thus, there exists $U \in$ PO(X_0, x) such that $(f/X_0)(\text{pCl}_{X_0}(U)) \subset \text{Cl}(V)$. By Lemmas 4.1 and 4.2, $U \in$ PO(X, x) and pCl($U) \subset$ pCl_{X_0}(U). Hence, we have $f(\text{pCl}(U)) = (f/X_0)(\text{pCl}(U)) \subset (f/X_0)(\text{pCl}_{X_0}(U)) \subset \text{Cl}(V)$. This shows that f is $\theta.p.c$.

COROLLARY 4.5. Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an α -open cover of a topological space *X*. A function $f : X \to Y$ is θ .p.c. if and only if the restriction $f/U_{\lambda} : U_{\lambda} \to Y$ is θ .p.c. for each $\lambda \in \Lambda$.

PROOF. This is an immediate consequence of Theorems 4.3 and 4.4. \Box

Let $\{X_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of topological spaces, A_{α} a nonempty subset of X_{α} for each $\alpha \in \mathcal{A}$ and $X = \Pi\{X_{\alpha} : \alpha \in \mathcal{A}\}$ denote the product space, where \mathcal{A} is nonempty.

LEMMA 4.6 (see [8]). Let *n* be a positive integer and $A = \prod_{j=1}^{n} A_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$. (1) $A \in PO(X)$ if and only if $A_{\alpha_j} \in PO(X_{\alpha_j})$ for each j = 1, 2, ..., n. (2) $pCl(\prod_{\alpha \in \mathcal{A}} A_{\alpha}) \subset \prod_{\alpha \in \mathcal{A}} pCl(A_{\alpha})$.

THEOREM 4.7. If a function $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ is $\theta.p.c.$ for each $\alpha \in \mathcal{A}$. Then the product function $f: \Pi X_{\alpha} \to \Pi Y_{\alpha}$, defined by $f(\{x_{\alpha}\}) = \{f_{\alpha}(x_{\alpha})\}$ for each $x = \{x_{\alpha}\}$, is $\theta.p.c.$

PROOF. Let $x = \{x_{\alpha}\} \in \Pi X_{\alpha}$ and W be any open set of ΠY_{α} containing f(x). Then, there exists an open set V_{α_i} of Y_{α_i} such that

$$f(\mathbf{x}) = \{f_{\alpha}(\mathbf{x}_{\alpha})\} \in \prod_{j=1}^{n} V_{\alpha_{j}} \times \prod_{\alpha \neq \alpha_{j}} Y_{\alpha} \subset W.$$

$$(4.2)$$

Since f_{α} is $\theta.p.c.$ for each α , there exists $U_{\alpha_j} \in \text{PO}(X_{\alpha_j}, x_{\alpha_j})$ such that $f_{\alpha_j}(\text{pCl}(U_{\alpha_j})) \subset \text{Cl}(V_{\alpha_j})$ for j = 1, 2, ..., n. Now, put $U = \prod_{j=1}^n U_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$. Then, it follows from Lemma 4.6 that $U \in \text{PO}(\Pi X_{\alpha}, x)$. Moreover, we have

$$f(\mathbf{pCl}(U)) \subset f(\prod_{j=1}^{n} \mathbf{pCl}(U_{\alpha_{j}}) \times \Pi_{\alpha \neq \alpha_{j}} X_{\alpha})$$

$$\subset \Pi_{j=1}^{n} f_{\alpha_{j}}(\mathbf{pCl}(U_{\alpha_{j}})) \times \Pi_{\alpha \neq \alpha_{j}} Y_{\alpha}$$

$$\subset \Pi_{j=1}^{n} \mathrm{Cl}(V_{\alpha_{j}}) \times \Pi_{\alpha \neq \alpha_{j}} Y_{\alpha} \subset \mathrm{Cl}(W).$$

$$(4.3)$$

This shows that f is θ .p.c.

5. Preservation property

DEFINITION 5.1. A topological space *X* is said to be

- *p-closed* [7] (resp., *p-Lindelöf*) if every cover of *X* by preopen sets has a finite (resp., countable) subfamily whose preclosures cover *X*,
- (2) *countably p-closed* if every countable cover of *X* by preopen sets has a finite subfamily whose preclosures cover *X*;
- (3) *quasi H-closed* [25] (resp., *almost Lindelöf* [6]) if every cover of *X* by open sets has a finite (resp., countable) subfamily whose closures cover *X*,
- (4) *lightly compact* [5] if every countable cover of *X* by open sets has a finite sub-family whose closures cover *X*.

DEFINITION 5.2. A subset *K* of a space *X* is said to be

- (1) *p-closed relative to X* [7] if for every cover $\{V_{\alpha} : \alpha \in \mathcal{A}\}$ of *K* by preopen sets of *X*, there exists a finite subset \mathcal{A}_* of \mathcal{A} such that $K \subset \cup \{pCl(V_{\alpha}) : \alpha \in \mathcal{A}_*\}$,
- (2) *quasi H-closed relative* to *X* [25] if for every cover $\{V_{\alpha} : \alpha \in \mathcal{A}\}$ of *K* by open sets of *X*, there exists a finite subset \mathcal{A}_* of \mathcal{A} such that $K \subset \cup \{\operatorname{Cl}(V_{\alpha}) : \alpha \in \mathcal{A}_*\}$.

THEOREM 5.3. If $f : X \to Y$ is a θ .p.c. function and K is p-closed relative to X, then f(K) is quasi H-closed relative to Y.

PROOF. Suppose that $f: X \to Y$ is $\theta.p.c.$ and K is p-closed relative to X. Let $\{V_{\alpha} : \alpha \in \mathcal{A}\}$ be a cover of f(K) by open sets of Y. For each point $x \in K$, there exists $\alpha(x) \in \mathcal{A}$ such that $f(x) \in V_{\alpha(x)}$. Since f is $\theta.p.c.$, there exists $U_x \in PO(X, x)$ such that $f(pCl(U_x)) \subset Cl(V_{\alpha(x)})$. The family $\{U_x : x \in K\}$ is a cover of K by preopen sets of X and hence there exists a finite subset K_* of K such that $K \subset \bigcup_{x \in K_*} pCl(U_x)$. Therefore, we obtain $f(K) \subset \bigcup_{x \in K_*} Cl(V_{\alpha(x)})$. This shows that f(K) is quasi H-closed relative to Y.

COROLLARY 5.4. Let $f : X \to Y$ be a θ .p.c. surjection. Then, the following properties *hold:*

(1) If X is p-closed, then Y is quasi H-closed.

(2) If X is p-Lindelöf, then Y is almost Lindelöf.

(3) If *X* is countably *p*-closed, then *Y* is lightly compact.

A subset *S* of a topological space *X* is said to be β -open [1] or semipreopen [3] if $S \subset Cl(Int(Cl(S)))$. It is well known that α -openness implies both preopenness and semi-openness which imply β -openness. The complement of a semipreopen set is said to be *semipreclosed* [3]. The intersection of all semipreclosed sets of *X* containing a subset *S* is the *semipreclosure* of *S* and is denoted by spCl(S) [3].

DEFINITION 5.5. A topological space *X* is said to be

- β-connected [24] or semipreconnected [2] if X cannot be expressed as the union of two nonempty disjoint β-open sets,
- (2) *semi-connected* [22] if *X* cannot be expressed as the union of two nonempty disjoint semi-open sets.

REMARK 5.6. We have the following implications:

$$\beta$$
-connected \Rightarrow semi-connected \Rightarrow connected. (5.1)

But, the converses need not be true as the following simple examples show.

EXAMPLE 5.7. (1) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is connected but not semi-connected.

(2) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b, c\}\}$. Then (X, τ) is semi-connected but not β -connected.

LEMMA 5.8. For a topological space *X*, the following properties are equivalent:

(1) *X* is β -connected or semipreconnected.

- (2) The intersection of two nonempty semipreopen subsets of X is always nonempty.
- (3) The intersection of two nonempty preopen subsets of X is always nonempty.

(4) pCl(V) = X for every nonempty preopen subset V of X.
(5) spCl(V) = X for every nonempty semipreopen subset V of X.

PROOF. The proofs of equivalences of (1), (2), and (3) are given in [2, Theorem 6.4]. The other properties (4) and (5), which are stated in [18], are easily equivalent to (3) and (2), respectively. \Box

THEOREM 5.9. If $f : X \to Y$ is a $\theta.p.c.$ surjection and X is β -connected, then Y is semi-connected.

PROOF. Let *V* be any nonempty open set of *Y*. Let $y \in V$. Since *f* is surjective, there exists $x \in X$ such that f(x) = y. Since *f* is θ .*p.c.*, there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subset Cl(V)$. Since *X* is β -connected, by Lemma 5.8 pCl(U) = *X* and hence Cl(V) = Y since *f* is surjective. Therefore, it follows from [22, Theorem 4.3] that *Y* is semi-connected.

REMARK 5.10. The following example shows that the image of β -connectedness under weakly precontinuous surjections is not necessarily semi-connected.

EXAMPLE 5.11. Let *X* be the set of real numbers, $\tau = \{\emptyset\} \cup \{V \subset X : 0 \in V\}$, $Y = \{a, b, c\}$, and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows: f(x) = a if x < 0; f(x) = c if x = 0; f(x) = b if x > 0. Then *f* is a weakly precontinuous surjection which is not $\theta.p.c$. The topological space (X, τ) is β -connected by Lemma 5.8. By Example 5.7(1), (Y, σ) is connected but not semi-connected.

REFERENCES

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ. A **12** (1983), no. 1, 77–90. MR 87b:54002. Zbl 577.54008.
- [2] T. Aho and T. Nieminen, *Spaces in which preopen subsets are semiopen*, Ricerche Mat. **43** (1994), no. 1, 45–59. MR 96b:54058. Zbl 912.54030.
- [3] D. Andrijević, Semipreopen sets, Mat. Vesnik 38 (1986), no. 1, 24-32. MR 87j:54002.
 Zbl 604.54002.
- [4] S. P. Arya and M. Deb, On θ-continuous mappings, Math. Student 42 (1974), 81-89. MR 53#3982.
- [5] R. W. Bagley, E. H. Connell, and J. D. McKnight Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), 500–506. MR 20#3523. Zbl 089.17601.
- [6] K. Dlaska and M. Ganster, Almost rc-Lindelöf spaces, Bull. Malaysian Math. Soc. (2) 17 (1997), 51–56.
- [7] J. Dontchev, M. Ganster, and T. Noiri, On p-closed spaces, Int. J. Math. Math. Sci. 24 (2000), no. 3, 203–212. MR 2001c:54017. Zbl 0965.54024.
- [8] N. El-Deeb, I. A. Hasanein, A. S. Mashhour, and T. Noiri, *On p-regular spaces*, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 27(75) (1983), no. 4, 311–315. MR 85d:54018. Zbl 524.54016.
- Z. Frolík, Remarks concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11(86) (1961), 381–385. MR 24#A2932. Zbl 104.17204.
- [10] T. Husain, Almost continuous mappings, Prace Mat. 10 (1966), 1–7. MR 36#3322. Zbl 138.17601.
- [11] S. Jafari and T. Noiri, On almost precontinuous functions, Int. J. Math. Math. Sci. 24 (2000), no. 3, 193–201. CMP 1 776 323. Zbl 958.54011.

- [12] D. S. Janković, *θ-regular spaces*, Int. J. Math. Math. Sci. 8 (1985), no. 3, 615–619. MR 87h:54030. Zbl 577.54012.
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. MR 29#4025. Zbl 113.16304.
- [14] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53. Zbl 571.54011.
- [15] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, A note on semicontinuity and precontinuity, Indian J. Pure Appl. Math. 13 (1982), no. 10, 1119–1123. MR 84a:54021. Zbl 499.54009.
- [16] A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar. 74 (1997), no. 3, 211–219. CMP 1 440 246. Zbl 924.54017.
- [17] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
 MR 33#3245. Zbl 137.41903.
- [18] T. Noiri, Properties of hyperconnected spaces, Acta Math. Hungar. 66 (1995), no. 1-2, 147– 154. MR 95k:54037. Zbl 818.54020.
- [19] _____, Strongly θ-precontinuous functions, Acta Math. Hungar. **90** (2001), 315–324.
- [20] M. C. Pal and P. Bhattacharyya, *Feeble and strong forms of preirresolute functions*, Bull. Malaysian Math. Soc. (2) **19** (1996), no. 2, 63–75. CMP 1 464 562. Zbl 885.54010.
- [21] R. Paul and P. Bhattacharyya, *Quasi-pre-continuous functions*, J. Indian Acad. Math. 14 (1992), no. 2, 115–126. CMP 1 261 772. Zbl 871.54018.
- [22] V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo
 (2) 24 (1975), no. 3, 273–285 (Italian). MR 57#4084.
- [23] V. Popa and T. Noiri, *Almost weakly continuous functions*, Demonstratio Math. 25 (1992), no. 1-2, 241–251. MR 93f:54020. Zbl 789.54014.
- [24] _____, *Weakly β-continuous functions*, An. Univ. Timişoara Ser. Mat.-Inform. **32** (1994), no. 2, 83–92. MR 97g:54019. Zbl 864.54009.
- [25] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170. MR 38#6544. Zbl 175.49501.
- [26] V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. MR 21#4345. Zbl 082.32502.
- [27] N. V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. (2) **78** (1968), 103–118.

Takashi Noiri: Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501, Japan

E-mail address: noiri@as.yatsushiro-nct.ac.jp

292