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PRODUCTS OF PROTOPOLOGICAL GROUPS

JULIE C. JONES
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Abstract. Montgomery and Zippin saied that a group is approximated by Lie groups if
every neighborhood of the identity contains an invariant subgroup H such that G/H is
topologically isomorphic to a Lie group. Bagley, Wu, and Yang gave a similar definition,
which they called a pro-Lie group. Covington extended this concept to a protopological
group. Covington showed that protopological groups possess many of the characteristics
of topological groups. In particular, Covington showed that in a special case, the product
of protopological groups is a protopological group. In this note, we give a characterization
theorem for protopological groups and use it to generalize her result about products to
the category of all protopological groups.
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1. Introduction. Montgomery and Zippin [5] saied that a group is approximated

by Lie groups if every neighborhood of the identity contains an invariant subgroup

H such that G/H is topologically isomorphic to a Lie group. Using a similar idea,

Bagley, Wu, and Yang [1] defined a pro-Lie group. Covington [3] extended this con-

cept to topological groups. She defined a protopological group as a group G with a

topology τ and a collection � of normal subgroups such that (1) for every neighbor-

hood U of the identity, there exists N ∈ � such that N ⊆ U and (2) G/N with the

quotient topology is a topological group for every N ∈�. The collection � is called a

normal system. We denote the quotient topology on G/N by qN(τ), and we call the

collection � = {qN(τ)}N∈� a quotient system for (G,τ). In [2], Covington defines a

t-protopological group as a protopological group (G,τ) with the additional require-

ment that the natural map ηN :G→G/N is an open map for all N ∈�. She also shows

that the product of t-protopological groups is a t-protopological group. Although her

proof uses ideas different than those used in the proof that a product of topological

groups is a topological group, it uses the fact that ηN : G→ G/N is an open map for

all N ∈ �. Since there are protopological groups, which are not t-protopological, it

is of interest to determine if the category of protopological groups is closed under

products. However, it is apparent that a different proof technique is needed, since we

do not have the hypothesis that ηN : G → G/N is an open map for all N ∈ �. In this

note, we will give a characterization theorem for protopological groups, and then use

it to show that the product of protopological groups is protopological.

Let (G,τ) be a protopological group with normal system � and quotient system � =
{qN(τ)}N∈�. We note that for each N ∈ �, the pullback topology from (G/N,qN(τ))
determines a group topology on G. We will denote this topology on G by PN(τ). Since

the join of group topologies is a group topology, τp = ∨N∈�PN(τ) is also a group
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topology on G. We call τp the complete pullback topology on G generated by τ . This

topology may also be called the weak topology on G. Covington [2] showed that τp is

the Graev topology when (G,τ) is a protopological group. It is a well-known result, due

to Hewitt and Ross [4], that τp =∨N∈�PN(τ) is the coarsest topology that makes G a

topological group. Hence, for a protopological group (G,τ) with normal system �, the

complete pullback topology τp is the only group topology contained in τ . When using

the pullback topologies, we will be interested in saturated sets. In particular, we will

say that a set U ⊆G is saturated with respect to N ∈� if for all x ∈U , η−1
N (ηN(x))⊆U .

2. Characterization and product theorems

Theorem 2.1 (characterization theorem for protopological groups). Let (G,τ) be a

protopological group with normal system � and quotient system � = {qN(τ)}N∈�. Let

τ∗ be a topology on G. Then (G,τ∗) is a protopological group with normal system �

and quotient system � if and only if τ∗ satisfies the following properties:

(a) τp ⊆ τ∗;

(b) if U ∈ τ∗, then U ∈ τp or U is not saturated with respect to N for all N ∈�; and

(c) if U ∈ τ∗ is a neighborhood of e, then there exists N ∈� such that N ⊆U .

Proof. Let (G,τ∗) be a protopological group. Since τp=∨N∈�PN(τ)=∨N∈�PN(τ∗)
is the coarsest topology that makes G a topological group [4], it follows that τp ⊆ τ∗.

If U ∈ τ∗ is saturated with respect to someN ∈�, then U = η−1
N (ηN(U)). But then U ∈

PN(τ)⊆ τp . Now, if U ∈ τ∗ is a neighborhood of e, there existsN ∈� such thatN ⊆U .

Conversely, assume that (a), (b), and (c) are satisfied. For N ∈ �, consider the group

G/N with the topology qN(τ∗). Let U ∈ qN(τ) = qN(τp). Since η−1
N (U) ∈ τp ⊆ τ∗, it

follows that U ∈ qN(τ∗). Hence, qN(τ) = qN(τp) ⊆ qN(τ∗). Now, let U ∈ qN(τ∗).
Then q−1

N (U)∈ τp and q−1
N (U) is saturated with respect to N . Therefore, q−1

N (U)∈ τp
which implies that U ∈ qN(τp) = qN(τ). Thus, qN(τ∗) ⊆ qN(τp) = qN(τ). Therefore,

qN(τ∗)= qN(τ) for all N ∈�.

By imposing the additional condition that ηN(τ∗)⊆ qN(τ), we obtain a characteri-

zation theorem for t-protopological groups.

Theorem 2.2 (product theorem). Let (Gα,τα) be a protopological group with normal

system �α and quotient system �α = {qN(τα)}N∈�α , for allα∈A. LetG =Πα∈AGα, and

let τ =Πα∈Aτα be the product topology onG. Then (G,τ) is a protopological group with

normal system � = {Πα∈ANα | Nα ∈ �α for all α ∈ A and Nα = Gα for all but finitely

many α∈A}.

Proof. For each α ∈ A, let τpα be the complete pullback topology on Gα. Then

{(Gα,τpα)}α∈A is a collection of topological groups, and (G,τp) is a topological group,

where τp = Πα∈Aτpα is the product topology of {τpα}α∈A. By the characterization

theorem, τpα ⊆ τα for each α ∈ A. So, τp = Πα∈Aτpα ⊆ Πα∈Aτα = τ . Now, if U ∈ τ is

a neighborhood of e = 〈eα〉α∈A ∈ G then there exists Uαi ∈ ταi , for i = 1, . . . ,n, such

that e ∈ Πni=1Uαi ×Πα∉{α1,...,αn}Gα ⊆ U . Then for each αi ∈ {α1, . . . ,αn}, there exists

Nαi ∈ �αi with Nαi ⊆ Uαi . Hence, N = Πni=1Nαi ×Πα∉{α1,...,αn}Gα ∈ � and e ∈ N ⊆
Πni=1Uαi×Πα∉{α1,...,αn}Gα ⊆U . Since (G,τp) is a topological group, (G/N,qN(τp)) is a
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topological group for all N ∈�. Hence, (G,τp) is a protopological group with normal

system � and quotient system � = {qN(τp)}N∈�. For each N ∈ �, let PN(τp) be the

pullback topology on G from (G/N,qN(τp)). Since the complete pullback topology is

the only group topology that makes G a protopological group with normal system �

and quotient system �, we have that τp = ∨N∈�PN(τp). For N ∈ �, let ηN : G→ G/N
be defined by ηN(g) = gN . Now, if U ∈ τ is saturated with respect to some N ∈ �,

then, ηN(U) ⊆ qN(τp). But then, U = η−1
N (ηN(U)) ∈ PN(τp) ⊆ τp . So, U ∈ τp . By the

characterization theorem, (G,τ) is a protopological group.
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