ON ZERO SUBRINGS AND PERIODIC SUBRINGS

HOWARD E. BELL

(Received 23 October 2000)

ABSTRACT. We give new proofs of two theorems on rings in which every zero subring is finite; and we apply these theorems to obtain a necessary and sufficient condition for an infinite ring with periodic additive group to have an infinite periodic subring.

2000 Mathematics Subject Classification. 16N40, 16N60, 16P99.

Let *R* be a ring and *N* its set of nilpotent elements; and call *R* reduced if $N = \{0\}$. Following [4], call *R* an *FZS*-ring if every zero subring—that is, every subring with trivial multiplication—is finite. It was proved in [1] that every nil *FZS*-ring is finite—a result which in more transparent form is as follows.

THEOREM 1. Every infinite nil ring contains an infinite zero subring.

Later, in [4], it was shown that every ring with N infinite contains an infinite zero subring. The proof relies on Theorem 1 together with the following result.

THEOREM 2 (see [4]). If *R* is any semiprime FZS-ring, then $R = B \oplus C$, where *B* is reduced and *C* is a direct sum of finitely many total matrix rings over finite fields.

Theorems 1 and 2 have had several applications in the study of commutativity and finiteness. Since the proofs in [1, 4] are rather complicated, it is desirable to have new and simpler proofs; and in our first major section, we present such proofs. In our final section, we apply Theorems 1 and 2 in proving a new theorem on existence of infinite periodic subrings.

1. Preliminaries. Let \mathbb{Z} and \mathbb{Z}^+ denote, respectively the ring of integers and the set of positive integers. For the ring *R*, denote by the symbols *T* and *P*(*R*), respectively the ideal of torsion elements and the prime radical; and for each $n \in \mathbb{Z}^+$, define R_n to be $\{x \in R \mid x^n = 0\}$. For *Y* an element or subset of *R*, let $\langle Y \rangle$ be the subring generated by *Y*; let $A_l(Y)$, $A_r(Y)$, and A(Y) be the left, right, and two-sided annihilators of *Y*; and let $C_R(Y)$ be the centralizer of *Y*. For $x, y \in R$, let [x, y] be the commutator xy - yx.

The subring *S* of *R* is said to be of finite index in *R* if (S, +) is of finite index in (R, +). An element $x \in R$ is called periodic if there exist distinct positive integers *m*, *n* such that $x^m = x^n$; and the ring *R* is called periodic if each of its elements is periodic.

We will use without explicit mention two well-known facts:

(i) the intersection of finitely many subrings of finite index in *R* is a subring of finite index in *R*;

(ii) if *R* is semiprime and *I* is an ideal of *R*, then R/A(I) is semiprime. We will also need several lemmas.

Lemma 1.1 is a theorem from [6]; Lemma 1.2 appears in [3], and with a different proof in [2]; Lemma 1.3, also given without proof, is all but obvious. Lemma 1.6, which appears to be new, is the key to our proofs of Theorems 1 and 2.

LEMMA 1.1. If *R* is a ring and *S* is a subring of finite index in *R*, then *S* contains an ideal of *R* which is of finite index in *R*.

LEMMA 1.2. Let *R* be a ring with the property that for each $x \in R$, there exist $m \in \mathbb{Z}^+$ and $p(t) \in \mathbb{Z}[t]$ such that $x^m = x^{m+1}p(x)$. Then *R* is periodic.

LEMMA 1.3. If *R* is any ring with $N \subseteq T$ and *H* is any finite set of pairwise orthogonal elements of *N*, then $\langle H \rangle$ is finite.

LEMMA 1.4. If *R* is any ring in which R_2 is finite, then *R* is of bounded index—that is, $N = R_n$ for some $n \in \mathbb{Z}^+$.

PROOF. Let $M = |R_2|$ and let $x \in N$ such that $x^{2k} = 0$ for $k \ge M + 1$; and note that $x^k, x^{k+1}, \dots, x^{2k-1}$ are all in R_2 . Since k > M, these elements cannot be distinct; hence there exist $h, j \in \mathbb{Z}^+$ such that $h < j \le 2k - 1$ and $x^h = x^{h+m(j-h)}$ for all $m \in \mathbb{Z}^+$. It follows that $x^h = 0$; hence $y^{2M} = 0$ for all $y \in N$.

LEMMA 1.5. If R is any FZS-ring, then $N \subseteq T$.

PROOF. Let *R* be a ring with $N \setminus T \neq \emptyset$, and let $x \in N \setminus T$. Then there exists a smallest $n \in \mathbb{Z}^+$ such that $x^n \in T$, and there exists $k \in \mathbb{Z}^+$ for which $kx^n = 0$. Since $kx^{n-1} \notin T$, $\langle kx^{n-1} \rangle$ is an infinite zero subring of *R*.

LEMMA 1.6. If *R* is any FZS-ring and *x* is any element of *N*, then A(x) is of finite index in *R*. Hence, if *S* is any finite subset of *N*, A(S) is of finite index in *R*.

PROOF. We use induction on the degree of nilpotence. Suppose first that $y^2 = 0$. Define $\Phi : Ry \to R$ by $ry \mapsto [ry, y] = -yry$; and note that $\Phi(Ry)$ is a zero subring of R, hence finite. Thus ker $\Phi = Ry \cap C_R(y)$ is of finite index in Ry. But it is easily seen that ker Φ is a zero ring, hence is finite; consequently, Ry is finite. Now consider $\eta : R \to Ry$ defined by $r \mapsto ry$, and note that ker $\eta = A_l(y)$ is of finite index in R. Similarly, $A_r(y)$ is of finite index and so is $A(y) = A_l(y) \cap A_r(y)$.

Now assume that A(x) is of finite index for all $x \in N$ with degree of nilpotence less than k, and let $y \in N$ be such that $y^k = 0$. Then $A(y^2)$ is of finite index in R. Define $\Phi : A(y^2)y \to R$ by $sy \mapsto [sy, y]$, $s \in A(y^2)$; and note that both $\Phi(A(y^2)y)$ and ker $\Phi = A(y^2)y \cap C_R(y)$ are zero rings, so that $A(y^2)y$ is finite. Consider the map $\Psi = A(y^2) \to A(y^2)y$ given by $s \to sy$. Now ker $\Psi = A(y^2) \cap A_l(y)$ must be of finite index in $A(y^2)$; and since $A(y^2)$ is of finite index in R, ker Ψ is of finite index in R. It follows that $A_l(y)$ is of finite index in R; and a similar argument shows that $A_r(y)$ is of finite index in R. Therefore A(y) is of finite index in R.

LEMMA 1.7. Let p be a prime, and let R be a ring such that $pR = \{0\}$.

(i) If $a \in R$ and $a^{p^k} = a$, then $a^{p^{mk}} = a$ for all $m \in \mathbb{Z}^+$. Hence if $a, b \in R$ with $a^{p^k} = a$ and $b^{p^j} = b$, there exists $n \in \mathbb{Z}^+$ such that $a^{p^n} = a$ and $b^{p^n} = b$.

(ii) If $a \in R$ and $a^{p^k} = a$, then for each $s \in \mathbb{Z}$, $(sa)^{p^k} = sa$.

(iii) If *R* is reduced and *a* is a periodic element of *R*, then there exists $n \in \mathbb{Z}^+$ such that $a^{p^n} = a$.

PROOF. (i) is almost obvious, and (ii) follows from the fact that $s^p \equiv s \pmod{p}$ for all $s \in \mathbb{Z}$. To obtain (iii), note that if *R* is reduced and *a* is periodic, then $\langle a \rangle$ is finite, hence a direct sum of finite fields, necessarily of characteristic *p*. Since $GF(p^{\alpha})$ satisfies the identity $x^{p^{\alpha}} = x$, the conclusion of (iii) follows by (i).

2. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. Suppose *R* is a counterexample. Note that *R* is an *FZS*-ring, so R = T by Lemma 1.5. It is easy to see that *R* contains a maximal finite zero subring *S*. By Lemma 1.6, A(S) is infinite; and maximality of *S* forces $A(S)_2 = S$. Thus, by replacing *R* by A(S), we may assume that R_2 is finite.

By Lemma 1.6, we can construct infinite sequences of pairwise orthogonal elements; and by Lemma 1.4 there is a smallest $M \in \mathbb{Z}^+$ for which R_M contains such sequences. Let $u_1, u_2, ...$ be an infinite sequence of pairwise orthogonal elements of R_M . Using Lemma 1.3, we can refine this sequence to obtain an infinite subsequence $v_1, v_2, ...$ such that for each $j \ge 2$, $v_j \notin \langle v_1, v_2, ..., v_{j-1} \rangle$. Defining V_0 to be $\{v_j^2 \mid j \in \mathbb{Z}^+\}$, we see that $V_0 \subseteq R_{M-1}$ and hence V_0 is finite, so we may assume without loss of generality that there exists a single $s \in R$ such that $v_j^2 = s$ for all $j \in \mathbb{Z}^+$. Take $m \in \mathbb{Z}^+$ such that ms = 0; and for each $j \in \mathbb{Z}^+$, define $w_j = \sum_{i=1}^{mj} v_i$. Then the w_j form an infinite subset of R_2 , contrary to the fact that R_2 is finite. The proof is now complete.

PROOF OF THEOREM 2. As before, since *R* is an *FZS*-ring, there is a maximal finite zero subring *S*; and by Lemma 1.6 A(S) is of finite index in *R*. By Lemma 1.1, A(S) contains an ideal *I* of *R* which is also of finite index in *R*. Let C = A(I) and let B = A(C). Then $B \supseteq I$, so *B* is of finite index in *R*.

Next we show that *B* is reduced. Let $x \in B$ such that $x^2 = 0$. Then $x \in A(C)$; and since $S \subseteq C$, the maximality of *S* forces $x \in B \cap C = \{0\}$. Therefore, *B* is reduced.

The rest of the proof is as in [4]. Since R/B is finite and semiprime, we can write it as $M_1 \oplus \cdots \oplus M_k$, where the M_i are total matrix rings over finite fields. Let C' = (B+C)/B and note that C' is an ideal of R/B and $C' \cong C$. Now C' must be a direct sum of some of the M_i , so $R/B = C' \oplus D'$ where D' is the annihilator of C'. Taking D to be an ideal of R containing B for which D/B = D', and noting that $C'D' = \{0\}$, we have $CD \subseteq B$. But $CD \subseteq C$ as well, so $CD \subseteq B \cap C = \{0\}$ and $D \subseteq A(C) = B$; therefore $D' = \{0\}$ and C' = R/B. It follows that R = B + C and hence $R = B \oplus C$; and since $C \cong C'$, C is a direct sum of total matrix rings as required.

REMARK 2.1. In [5], Lanski established the conclusion of Theorem 2 under the apparently stronger hypothesis that N is finite; and his proof uses induction on |N|. As we noted in the introduction, it follows from Theorems 1 and 2 that R is an *FZS*-ring if and only if N is finite.

3. A **theorem on periodic subrings.** We have noted that if *N* is infinite, *R* contains an infinite nil subring. Since periodic elements extend the notion of nilpotent element,

HOWARD E. BELL

it is natural to ask whether there is a periodic analogue—that is, to ask whether a ring with infinitely many periodic elements must have an infinite periodic subring. The answer in general is no, even in the case of commutative rings. The complex field \mathbb{C} is a counterexample, for the set of nonzero periodic elements is the set U of roots of unity, and $u \in U$ implies $2u \notin U$. Moreover, if S is any finite ring, $\mathbb{C} \oplus S$ is also a counterexample; therefore, we restrict our attention to rings R for which R = T.

THEOREM 3.1. Let R be a ring with R = T. Then a necessary and sufficient condition for R to have an infinite periodic subring is that R contains an infinite set of pairwise-commuting periodic elements.

PROOF. It is known that in any infinite periodic ring *R*, either *N* is infinite or the center *Z* is infinite [4, Theorem 7]. Therefore our condition is necessary.

For sufficiency, suppose that *R* has infinitely many pairwise-commuting periodic elements. Now *R* is the direct sum of its *p*-primary components $R^{(p)}$; and if there exist infinitely many primes $p_1, p_2, p_3, ...$ such that $R^{(p_i)}$ contains a nonzero periodic element a_{p_i} , then the direct sum of the rings $\langle a_{p_i} \rangle$ is an infinite periodic subring. Thus, we may assume that only finitely many $R^{(p)}$ contain nonzero periodic elements, so we need only consider the case that $R = R^{(p)}$ for some prime *p*. Of course we may assume that *R* is an *FZS*-ring.

Consider the factor ring $\overline{R} = R/P(R)$. Since R is an *FZS*-ring, it follows from Theorem 1 that P(R) is finite, in which case \overline{R} inherits our hypothesis on pairwise-commuting periodic elements. If \overline{R} has an infinite periodic subring \overline{S} and S is its preimage in R, then for all $x \in S$, there exist distinct $m, n \in \mathbb{Z}^+$ such that $x^n - x^m \in P(R) \subseteq N$; hence S is periodic by Lemma 1.2. Thus, we may assume that $R = R^{(p)}$ and that R is a semiprime *FZS*-ring.

By Theorem 2, write $R = B \oplus C$, where *B* is reduced and *C* is finite; and note that *B* must have an infinite subset *H* of pairwise-commuting periodic elements. Note also that $pB = \{0\}$, since *B* is reduced. Let $a, b \in H$, and by Lemma 1.7(i) and (iii) obtain $n \in \mathbb{Z}^+$ such that $a^{p^n} = a$ and $b^{p^n} = b$. It follows at once that $(a - b)^{p^n} = a^{p^n} - b^{p^n} = a - b$ and $(ab)^{p^n} = a^{p^n} b^{p^n} = ab$; and these facts, together with Lemma 1.7(ii) imply that $\langle H \rangle$ is an infinite periodic subring of *R*.

ACKNOWLEDGEMENT. This research was supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. 3961.

REFERENCES

- H. E. Bell, *Infinite subrings of infinite rings and near-rings*, Pacific J. Math. **59** (1975), no. 2, 345–358. MR 52#8197. Zbl 0315.17006.
- [2] _____, On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hungar.
 36 (1980), no. 3-4, 293–302. MR 82h:16025. Zbl 0464.16026.
- [3] M. Chacron, *On a theorem of Herstein*, Canad. J. Math. **21** (1969), 1348–1353. MR 41#6905. Zbl 0213.04302.
- [4] A. A. Klein and H. E. Bell, *Rings with finitely many nilpotent elements*, Comm. Algebra 22 (1994), no. 1, 349–354. MR 94k:16033. Zbl 0806.16017.
- [5] C. Lanski, *Rings with few nilpotents*, Houston J. Math. 18 (1992), no. 4, 577–590. MR 94c:16026. Zbl 0821.16020.

416

 [6] J. Lewin, Subrings of finite index in finitely generated rings, J. Algebra 5 (1967), 84–88. MR 34#196. Zbl 0143.05303.

Howard E. Bell: Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1

E-mail address: hbell@spartan.ac.brocku.ca