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ON ZERO SUBRINGS AND PERIODIC SUBRINGS
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Abstract. We give new proofs of two theorems on rings in which every zero subring is
finite; and we apply these theorems to obtain a necessary and sufficient condition for an
infinite ring with periodic additive group to have an infinite periodic subring.
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Let R be a ring and N its set of nilpotent elements; and call R reduced if N = {0}.
Following [4], call R an FZS -ring if every zero subring—that is, every subring with

trivial multiplication—is finite. It was proved in [1] that every nil FZS -ring is finite—a

result which in more transparent form is as follows.

Theorem 1. Every infinite nil ring contains an infinite zero subring.

Later, in [4], it was shown that every ring with N infinite contains an infinite zero

subring. The proof relies on Theorem 1 together with the following result.

Theorem 2 (see [4]). If R is any semiprime FZS-ring, then R = B⊕C , where B is

reduced and C is a direct sum of finitely many total matrix rings over finite fields.

Theorems 1 and 2 have had several applications in the study of commutativity and

finiteness. Since the proofs in [1, 4] are rather complicated, it is desirable to have new

and simpler proofs; and in our first major section, we present such proofs. In our final

section, we apply Theorems 1 and 2 in proving a new theorem on existence of infinite

periodic subrings.

1. Preliminaries. Let Z and Z+ denote, respectively the ring of integers and the set

of positive integers. For the ring R, denote by the symbols T and P(R), respectively

the ideal of torsion elements and the prime radical; and for each n∈ Z+, define Rn to

be {x ∈ R | xn = 0}. For Y an element or subset of R, let 〈Y 〉 be the subring generated

by Y ; let Al(Y), Ar(Y), and A(Y) be the left, right, and two-sided annihilators of Y ;

and let CR(Y) be the centralizer of Y . For x,y ∈ R, let [x,y] be the commutator

xy−yx.

The subring S of R is said to be of finite index in R if (S,+) is of finite index in (R,+).
An element x ∈ R is called periodic if there exist distinct positive integers m, n such

that xm = xn; and the ring R is called periodic if each of its elements is periodic.

We will use without explicit mention two well-known facts:

(i) the intersection of finitely many subrings of finite index in R is a subring of

finite index in R;
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(ii) if R is semiprime and I is an ideal of R, then R/A(I) is semiprime.

We will also need several lemmas.

Lemma 1.1 is a theorem from [6]; Lemma 1.2 appears in [3], and with a different

proof in [2]; Lemma 1.3, also given without proof, is all but obvious. Lemma 1.6, which

appears to be new, is the key to our proofs of Theorems 1 and 2.

Lemma 1.1. If R is a ring and S is a subring of finite index in R, then S contains an

ideal of R which is of finite index in R.

Lemma 1.2. Let R be a ring with the property that for each x ∈ R, there existm∈ Z+
and p(t)∈ Z[t] such that xm = xm+1p(x). Then R is periodic.

Lemma 1.3. If R is any ring with N ⊆ T andH is any finite set of pairwise orthogonal

elements of N , then 〈H〉 is finite.

Lemma 1.4. If R is any ring in which R2 is finite, then R is of bounded index—that is,

N = Rn for some n∈ Z+.

Proof. Let M = |R2| and let x ∈N such that x2k = 0 for k ≥M+1; and note that

xk,xk+1, . . . ,x2k−1 are all in R2. Since k >M , these elements cannot be distinct; hence

there exist h,j ∈ Z+ such that h < j ≤ 2k−1 and xh = xh+m(j−h) for all m ∈ Z+. It

follows that xh = 0; hence y2M = 0 for all y ∈N .

Lemma 1.5. If R is any FZS-ring, then N ⊆ T .

Proof. Let R be a ring withN\T ≠∅, and let x ∈N\T . Then there exists a smallest

n∈ Z+ such that xn ∈ T , and there exists k∈ Z+ for which kxn = 0. Since kxn−1 ∉ T ,

〈kxn−1〉 is an infinite zero subring of R.

Lemma 1.6. If R is any FZS-ring and x is any element of N , then A(x) is of finite

index in R. Hence, if S is any finite subset of N , A(S) is of finite index in R.

Proof. We use induction on the degree of nilpotence. Suppose first that y2 = 0.

Define Φ : Ry → R by ry � [ry,y] = −yry ; and note that Φ(Ry) is a zero subring

of R, hence finite. Thus kerΦ = Ry ∩CR(y) is of finite index in Ry . But it is easily

seen that kerΦ is a zero ring, hence is finite; consequently, Ry is finite. Now consider

η : R → Ry defined by r � ry , and note that kerη = Al(y) is of finite index in R.

Similarly, Ar(y) is of finite index and so is A(y)=Al(y)∩Ar(y).
Now assume that A(x) is of finite index for all x ∈ N with degree of nilpotence

less than k, and let y ∈ N be such that yk = 0. Then A(y2) is of finite index in R.

Define Φ : A(y2)y → R by sy � [sy,y], s ∈ A(y2); and note that both Φ(A(y2)y)
and kerΦ =A(y2)y∩CR(y) are zero rings, so thatA(y2)y is finite. Consider the map

Ψ = A(y2)→ A(y2)y given by s → sy . Now kerΨ = A(y2)∩Al(y) must be of finite

index in A(y2); and since A(y2) is of finite index in R, kerΨ is of finite index in R. It

follows that Al(y) is of finite index in R; and a similar argument shows that Ar(y) is

of finite index in R. Therefore A(y) is of finite index in R.

Lemma 1.7. Let p be a prime, and let R be a ring such that pR = {0}.
(i) If a ∈ R and apk = a, then apmk = a for all m ∈ Z+. Hence if a,b ∈ R with

apk = a and bpj = b, there exists n∈ Z+ such that apn = a and bpn = b.
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(ii) If a∈ R and apk = a, then for each s ∈ Z, (sa)pk = sa.

(iii) If R is reduced and a is a periodic element of R, then there exists n ∈ Z+ such

that apn = a.

Proof. (i) is almost obvious, and (ii) follows from the fact that sp ≡ s (modp)
for all s ∈ Z. To obtain (iii), note that if R is reduced and a is periodic, then 〈a〉 is

finite, hence a direct sum of finite fields, necessarily of characteristic p. Since GF(pα)
satisfies the identity xpα = x, the conclusion of (iii) follows by (i).

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose R is a counterexample. Note that R is an FZS -ring,

so R = T by Lemma 1.5. It is easy to see that R contains a maximal finite zero subring

S. By Lemma 1.6, A(S) is infinite; and maximality of S forces A(S)2 = S. Thus, by

replacing R by A(S), we may assume that R2 is finite.

By Lemma 1.6, we can construct infinite sequences of pairwise orthogonal elements;

and by Lemma 1.4 there is a smallest M ∈ Z+ for which RM contains such sequences.

Let u1,u2, . . . be an infinite sequence of pairwise orthogonal elements of RM . Using

Lemma 1.3, we can refine this sequence to obtain an infinite subsequence v1,v2, . . .
such that for each j ≥ 2, vj ∉ 〈v1,v2, . . . ,vj−1〉. Defining V0 to be {v2

j | j ∈ Z+}, we see

that V0 ⊆ RM−1 and hence V0 is finite, so we may assume without loss of generality

that there exists a single s ∈ R such that v2
j = s for all j ∈ Z+. Take m ∈ Z+such that

ms = 0; and for each j ∈ Z+, define wj =
∑mj
i=1vi. Then the wj form an infinite subset

of R2, contrary to the fact that R2 is finite. The proof is now complete.

Proof of Theorem 2. As before, since R is an FZS -ring, there is a maximal finite

zero subring S; and by Lemma 1.6 A(S) is of finite index in R. By Lemma 1.1, A(S)
contains an ideal I of R which is also of finite index in R. Let C =A(I) and let B =A(C).
Then B ⊇ I, so B is of finite index in R.

Next we show that B is reduced. Let x ∈ B such that x2 = 0. Then x ∈ A(C); and

since S ⊆ C , the maximality of S forces x ∈ B∩C = {0}. Therefore, B is reduced.

The rest of the proof is as in [4]. Since R/B is finite and semiprime, we can write it as

M1⊕···⊕Mk, where the Mi are total matrix rings over finite fields. Let C′ = (B+C)/B
and note that C′ is an ideal of R/B and C′ � C . Now C′ must be a direct sum of some

of the Mi, so R/B = C′ ⊕D′ where D′ is the annihilator of C′. Taking D to be an ideal

of R containing B for which D/B = D′, and noting that C′D′ = {0}, we have CD ⊆ B.

But CD ⊆ C as well, so CD ⊆ B∩C = {0} and D ⊆ A(C) = B; therefore D′ = {0} and

C′ = R/B. It follows that R = B+C and hence R = B⊕C ; and since C � C′, C is a direct

sum of total matrix rings as required.

Remark 2.1. In [5], Lanski established the conclusion of Theorem 2 under the ap-

parently stronger hypothesis that N is finite; and his proof uses induction on |N|. As

we noted in the introduction, it follows from Theorems 1 and 2 that R is an FZS -ring

if and only if N is finite.

3. A theorem on periodic subrings. We have noted that if N is infinite, R contains

an infinite nil subring. Since periodic elements extend the notion of nilpotent element,
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it is natural to ask whether there is a periodic analogue—that is, to ask whether a ring

with infinitely many periodic elements must have an infinite periodic subring. The

answer in general is no, even in the case of commutative rings. The complex field C
is a counterexample, for the set of nonzero periodic elements is the set U of roots

of unity, and u ∈ U implies 2u ∉ U . Moreover, if S is any finite ring, C⊕S is also a

counterexample; therefore, we restrict our attention to rings R for which R = T .

Theorem 3.1. Let R be a ring with R = T . Then a necessary and sufficient condition

for R to have an infinite periodic subring is that R contains an infinite set of pairwise-

commuting periodic elements.

Proof. It is known that in any infinite periodic ring R, either N is infinite or the

center Z is infinite [4, Theorem 7]. Therefore our condition is necessary.

For sufficiency, suppose that R has infinitely many pairwise-commuting periodic

elements. Now R is the direct sum of its p-primary components R(p); and if there

exist infinitely many primes p1,p2,p3, . . . such that R(pi) contains a nonzero periodic

element api , then the direct sum of the rings 〈api〉 is an infinite periodic subring.

Thus, we may assume that only finitely many R(p) contain nonzero periodic elements,

so we need only consider the case that R = R(p) for some prime p. Of course we may

assume that R is an FZS -ring.

Consider the factor ring R̄ = R/P(R). Since R is an FZS -ring, it follows from

Theorem 1 that P(R) is finite, in which case R̄ inherits our hypothesis on pairwise-

commuting periodic elements. If R̄ has an infinite periodic subring S̄ and S is its

preimage in R, then for all x ∈ S, there exist distinct m,n ∈ Z+ such that xn−xm ∈
P(R)⊆N ; hence S is periodic by Lemma 1.2. Thus, we may assume that R = R(p) and

that R is a semiprime FZS -ring.

By Theorem 2, write R = B⊕C , where B is reduced and C is finite; and note that B
must have an infinite subset H of pairwise-commuting periodic elements. Note also

that pB = {0}, since B is reduced. Let a,b ∈ H, and by Lemma 1.7(i) and (iii) obtain

n∈ Z+ such that apn = a and bpn = b. It follows at once that (a−b)pn = apn−bpn =
a−b and (ab)pn = apnbpn = ab; and these facts, together with Lemma 1.7(ii) imply

that 〈H〉 is an infinite periodic subring of R.
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