ON THE DIOPHANTINE EQUATION $x^3 = dy^2 \pm q^6$

FADWA S. ABU MURIEFAH

(Received 21 December 2000)

ABSTRACT. Let q > 3 denote an odd prime and d a positive integer without any prime factor $p \equiv 1 \pmod{3}$. In this paper, we have proved that if (x,q) = 1, then $x^3 = dy^2 \pm q^6$ has exactly two solutions provided $q \not\equiv \pm 1 \pmod{24}$.

2000 Mathematics Subject Classification. 11D41.

Cohn [1] and recently Zhang [2, 3] have solved the Diophantine equation

$$x^3 = dy^2 \pm q^6 \tag{1}$$

when q = 1,3,4, under some conditions on d. In this paper, we consider the general case of (1) where $q \neq 3$ is any odd prime by using arguments similar to those used by Cohn [1].

Let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ be a solution of (1) with x, y > 0, then the solution is trivial if $x = 0, \pm q^2$ or $y = \pm 1$. We need the following lemma.

LEMMA 1. The equation $p^2 = a^4 - 3b^2$, where *p* denotes an odd prime and (p, a) = l, may have a solution in positive integers *a* and *b* only if $p \equiv \pm 1 \pmod{24}$.

PROOF. Suppose $3b^2 = a^4 - p^2$. Then clearly *a* is odd and *b* is even. Since $a^4 \equiv 3b^2 \pmod{p}$, and (p,a) = 1 therefore the Legendre symbol (3/p) = 1 and so $p \equiv \pm 1 \pmod{12}$. Now $(a^2 + p, a^2 - p) = 2$ implies that

$$a^2 \pm p = 3.2c^2,$$
 (2)

$$a^2 \mp p = 2d^2,\tag{3}$$

where 2cd = b and (c,d) = 1. Whence

$$a^2 = 3c^2 + d^2. (4)$$

Here *d* is odd, otherwise we get a contradiction modulo 4. Then considering (3) modulo 8, we get $p \equiv \pm 1 \pmod{8}$. This completes the proof.

Now we consider the upper sign in (1), our main result is laid down in the following.

THEOREM 2. Let *d* be a positive integer without prime factor $p \equiv 1 \pmod{3}$ and let $q \neq 3$ be an odd prime. If $q \not\equiv \pm 1 \pmod{24}$ and (x, q) = 1, then the Diophantine equation

$$x^3 = dy^2 + q^6$$
 (5)

has exactly two solutions given by

$$x_{1} = \frac{3q^{4} - 2q^{2} - 1}{4}, \qquad y = ab, \quad where \ a = \frac{3q^{4} + 1}{4}, \ db^{2} = \frac{3q^{4} - 6q^{2} - 1}{4},$$

$$x_{2} = \frac{q^{4} - 2q^{2} - 3}{4}, \qquad y = 9ab, \quad where \ a = \frac{q^{4} + 3}{4}, \ db^{2} = \frac{q^{4} - 6q^{2} - 3}{4}.$$
(6)

PROOF. If *d* has a square factor, then it can be absorbed into y^2 , so there is no loss of generality in supposing *d* a square free integer. Now

$$dy^{2} = x^{3} - q^{6} = (x - q^{2})(x^{2} + q^{2}x + q^{4}).$$
(7)

If any prime r divides both d and $(x^2 + q^2x + q^4)$, then by hypothesis $r \equiv 2 \pmod{3}$ or r = 3. But $r \mid (x^2 + q^2x + q^4)$ implies that $(2x + q^2)^2 + 3q^4 \equiv 0 \pmod{r}$ so the Legendre symbol (-3/r) = 1, which is a contradiction, whence r = 1 or 3. Also since (x, q) = 1, therefore $(x - q^2, x^2 + q^2x + q^4) = 1$ or 3. So for (7) we have only two possibilities: either

$$x^{2} + q^{2}x + q^{4} = a^{2}, \qquad x - q^{2} = db^{2},$$
 (8)

or

$$x^{2} + q^{2}x + q^{4} = 3a^{2}, \qquad x - q^{2} = 3db^{2}, \tag{9}$$

where (q,a) = 1 and (q,b) = 1. Consider the first possibility when $(2x + q^2)^2 + 3q^4 = (2a)^2$ and y = ab. This equation is known to have a finite number of solutions. It can be written as

$$3q^4 = (2a + 2x + q^2)(2a - (2x + q^2)).$$
⁽¹⁰⁾

Then for the nontrivial solution of this equation we have only two cases: CASE 1.

$$3q^4 = 2a \pm (2x + q^2), \qquad 1 = 2a \mp (2x + q^2),$$
 (11)

by subtracting and adding these two equations we get

$$x = \frac{3q^4 - 2q^2 - 1}{4}, \qquad a = \frac{3q^4 + 1}{4}.$$
 (12)

Here a > 1, so y > 1, and $x - q^2 = db^2$ implies that

$$db^2 = \frac{3q^4 - 6q^2 - 1}{4}.$$
 (13)

CASE 2.

$$3 = 2a \pm (2x + q^2), \qquad q^4 = 2a \mp (2x + q^2). \tag{14}$$

As in Case 1 we get the nontrivial solution

$$x = \frac{3q^4 - 2q^2 - 1}{4}, \qquad a = \frac{3q^4 + 1}{4}, \qquad db^2 = \frac{3q^4 - 6q^2 - 1}{4}.$$
 (15)

Now suppose the second possibility. Obviously *a* is odd and $x^2 \equiv 3a^2 \pmod{q}$, and since (q, a) = 1, so the Legendre symbol (3/q) = 1, hence $q \equiv \pm 1 \pmod{12}$. Eliminating *x* and dividing by 3, we get

$$a^2 = q^4 + 3db^2(q^2 + db^2).$$
(16)

Considering (16) modulo 8 we get either $db^2 \equiv -1 \pmod{8}$ or $db^2 \equiv 0 \pmod{8}$. (1) $db^2 \equiv -1 \pmod{8}$. Then from (16) we get

$$3d^{2}b^{4} = (2a + 2q^{2} + 3db^{2})(2a - 2q^{2} - 3db^{2}).$$
⁽¹⁷⁾

Let *S* be a common prime divisor of the two factors in the right-hand side of (17), then *S* is odd, *S* | 4*a* and *S* | 2(2 q^2 + 3 db^2). But *S*² divides the left-hand side implies that *S* | 3 db^2 , so *S* | q^2 . Here *S* = 1, otherwise $x - q^2 = 3db^2$ implies that $q \mid x$ which is not true. Thus from (17) we get

$$2a \pm (2q^2 + 3db^2) = d_1^2 b_1^4, \qquad 2a \mp (2q^2 + 3db^2) = 3d_2^2 b_2^4, \tag{18}$$

where $d = d_1 d_2$ and $b = b_1 b_2$. Whence

$$\pm 2(2q^2 + 3db^2) = d_1^2 b_1^4 - 3d_2^2 b_2^4.$$
⁽¹⁹⁾

Considering this equation modulo 3, we get

$$4q^2 = d_1^2 b_1^4 - 3d_2^2 b_2^4 - 6db^2.$$
⁽²⁰⁾

Now we prove that $d_1 = 1$. Since *d* is odd, therefore d_1 must be odd. Let *t* be any odd prime dividing d_1 then by hypothesis $t \equiv 2 \pmod{3}$ but then from (20) we get

$$4q^2 \equiv -3d_2^2 b_2^4 \pmod{t},$$
 (21)

so (-3/t) = 1, which is not true. Thus $d_1 = 1$ and (20) becomes

$$q^{2} = b_{1}^{4} - 3\left(\frac{b_{1}^{2} + db_{2}^{4}}{2}\right)^{2},$$
(22)

since $(q, b_1) = 1$, therefore by Lemma 1, $q \equiv \pm 1 \pmod{24}$.

(2) $db^2 \equiv 0 \pmod{8}$. Now we prove that if (16) has a solution, then $q \equiv \pm 1 \pmod{24}$. Since *d* is a square free, *b* should be even. Suppose b = 2m, then (16) can be written as

$$12d^2m^4 = (a+q^2+6dm^2)(a-q^2-6dm^2).$$
(23)

As before we can prove that the common divisor of the two factors in the right-hand side of (23) is 2, so

$$a \pm (q^2 + 6dm^2) = 2d_1^2m_1^4, \qquad a \mp (q^2 + 6dm^2) = 6d_2^2m_2^4,$$
 (24)

where $d = d_1d_2$ and $m = m_1m_2$. It is clear that (a,q) = 1 implies that $(m_1,q) = 1$.

Subtracting the two equations in (24) we get

$$\pm (q^2 + 6dm^2) = d_1^2 m_1^4 - 3d_2^2 m_2^4, \tag{25}$$

again considering this equation modulo 3, we get $q^2 = d_1^2 m_1^4 - 3d_2^2 m_2^4 - 6dm^2$. As before d_1 cannot have any odd prime divisor, so $d_1 = 1$ or 2.

If $d_1 = 1$, then

$$q^2 = 4m_1^4 - 3(m_1^2 + dm_2^2).$$
⁽²⁶⁾

Here m_1 is odd, otherwise we get a contradiction modulo 8. Since $(m_1, q) = 1$, then from (26) we get

$$2m_1^2 \pm q = 3s^2, \qquad 2m_1^2 \mp q = n^2, \tag{27}$$

where $sn = m_1^2 + dm_2^2$, so *s* and *n* are both odd. Hence $q \equiv \pm 1 \pmod{8}$, combining this result with $q \equiv \pm 1 \pmod{12}$, we get $q \equiv \pm 1 \pmod{24}$.

If $d_1 = 2$, then

$$q^2 = 16b_1^4 - 3(b_1^2 + db_2^2)^2$$
(28)

which is impossible modulo 8.

Using the same argument as in Theorem 2 we can prove the following theorem.

THEOREM 3. Let *d* be a positive integer without prime factor $p \equiv 1 \pmod{3}$ and $q \neq 3$ an odd prime. If $q \not\equiv \pm 1 \pmod{24}$ and (x,q) = 1, then the Diophantine equation $x^3 = dy^2 - q^6$ has exactly two solutions given by

$$x_{1} = \frac{3q^{4} + 2q^{2} - 1}{4}, \qquad y = ab, \quad where \ a = \frac{3q^{4} + 1}{4}, \ db^{2} = \frac{3q^{4} + 6q^{2} - 1}{4},$$

$$x_{2} = \frac{q^{4} + 2q^{2} - 3}{4}, \qquad y = 9ab, \quad where \ a = \frac{q^{4} + 3}{4}, \ db^{2} = \frac{q^{4} + 6q^{2} - 3}{4}.$$
(29)

Sometimes, combining our results with Cohn's result [1] we can solve the title equation completely when *d* has no prime factor $\equiv 1 \pmod{3}$, as we show in the following example.

EXAMPLE 4. Consider the Diophantine equation $x^3 = dy^2 \pm 5^6$ where *d* has no prime factor $\equiv 1 \pmod{3}$ and (5, d) = 1.

Here q = 5, when (x, 5) = 1, using Theorem 2 for the positive sign this equation has only two solutions given by $x_1 = 456$, $db^2 = 431$, and $x_2 = 143$, $db^2 = 118$. So d = 431,118. Now let 5 | x, then because (5, d) = 1, the equation reduces to the form $x^3 = 5dy^2 + 1$, which by [1, Theorem 1] has no solution in positive integers.

So the equation $x^3 = dy^2 + 5^6$ has a solution only if d = 431,118.

For the negative sign this equation has two solutions when (x, 5) = 1 given by

$$x_1 = 481, \quad db^2 = 506, \quad x_2 = 168, \quad db^2 = 193,$$
 (30)

that is, when d = 506, 193. If 5 | x, then the equation reduces to the form $x^3 = 5dy^2 - 1$, which by [1, Theorem 2] has no solution in positive integers.

496

497

REFERENCES

- [1] J. H. E. Cohn, *The Diophantine equations* $x^3 = Ny^2 \pm 1$, Quart. J. Math. Oxford Ser. (2) 42
- [1] J. H. E. Conn, *The Diophantine equations x³ = Ny² ± 1*, Quart. J. Math. Oxford Ser. (2) 42 (1991), no. 165, 27-30. MR 92h:11020. Zbl 0722.11019.
 [2] F. Z. Li, *On the Diophantine equation x³ ± 4096 = Dy²*, Heilongjiang Daxue Ziran Kexue Xuebao 11 (1994), no. 1, 27-31 (Chinese). MR 95c:11033. Zbl 0836.11012.
 [3] _____, *The Diophantine equation x³ ± 729 = Dy²*, Dongbei Shida Xuebao (1995), no. 1, 100 (2000).
- 19-20 (Chinese). MR 97b:11041.

FADWA S. ABU MURIEFAH: MATHEMATICS DEPARTMENT, GIRLS COLLEGE OF EDUCATION, Riyadh, Saudi Arabia