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ON THE DIOPHANTINE EQUATION x3 = dy2±q6

FADWA S. ABU MURIEFAH

(Received 21 December 2000)

Abstract. Let q > 3 denote an odd prime and d a positive integer without any prime
factor p ≡ 1 (mod3). In this paper, we have proved that if (x,q) = 1, then x3 = dy2±q6

has exactly two solutions provided q �±1 (mod24).

2000 Mathematics Subject Classification. 11D41.

Cohn [1] and recently Zhang [2, 3] have solved the Diophantine equation

x3 = dy2±q6 (1)

when q = 1,3,4, under some conditions on d. In this paper, we consider the general

case of (1) where q ≠ 3 is any odd prime by using arguments similar to those used by

Cohn [1].

Let (x,y) ∈ Z×Z be a solution of (1) with x,y > 0, then the solution is trivial if

x = 0, ±q2 or y =±1. We need the following lemma.

Lemma 1. The equation p2 = a4−3b2, where p denotes an odd prime and (p,a)= l,
may have a solution in positive integers a and b only if p ≡±1 (mod24).

Proof. Suppose 3b2 = a4−p2. Then clearly a is odd and b is even. Since a4 ≡ 3b2

(modp), and (p,a) = 1 therefore the Legendre symbol (3/p) = 1 and so p ≡ ±1

(mod12). Now (a2+p,a2−p)= 2 implies that

a2±p = 3.2c2, (2)

a2∓p = 2d2, (3)

where 2cd= b and (c,d)= 1. Whence

a2 = 3c2+d2. (4)

Hered is odd, otherwise we get a contradiction modulo 4. Then considering (3) modulo

8, we get p ≡±1 (mod8). This completes the proof.

Now we consider the upper sign in (1), our main result is laid down in the following.

Theorem 2. Let d be a positive integer without prime factor p ≡ 1 (mod3) and let

q ≠ 3 be an odd prime. If q �≡ ±1 (mod24) and (x,q)= 1, then the Diophantine equation

x3 = dy2+q6 (5)
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has exactly two solutions given by

x1 = 3q4−2q2−1
4

, y = ab, where a= 3q4+1
4

, db2 = 3q4−6q2−1
4

,

x2 = q
4−2q2−3

4
, y = 9ab, where a= q

4+3
4

, db2 = q
4−6q2−3

4
.

(6)

Proof. If d has a square factor, then it can be absorbed into y2, so there is no loss

of generality in supposing d a square free integer. Now

dy2 = x3−q6 = (x−q2)(x2+q2x+q4). (7)

If any prime r divides both d and (x2+q2x+q4), then by hypothesis r ≡ 2 (mod3) or

r = 3. But r | (x2+q2x+q4) implies that (2x+q2)2+3q4 ≡ 0 (modr) so the Legendre

symbol (−3/r)= 1, which is a contradiction, whence r = 1 or 3. Also since (x,q)= 1,

therefore (x−q2,x2+q2x+q4) = 1 or 3. So for (7) we have only two possibilities:

either

x2+q2x+q4 = a2, x−q2 = db2, (8)

or

x2+q2x+q4 = 3a2, x−q2 = 3db2, (9)

where (q,a)= 1 and (q,b)= 1. Consider the first possibility when (2x+q2)2+3q4 =
(2a)2 and y = ab. This equation is known to have a finite number of solutions. It can

be written as

3q4 = (2a+2x+q2)(2a−(2x+q2)). (10)

Then for the nontrivial solution of this equation we have only two cases:

Case 1.

3q4 = 2a±(2x+q2), 1= 2a∓(2x+q2), (11)

by subtracting and adding these two equations we get

x = 3q4−2q2−1
4

, a= 3q4+1
4

. (12)

Here a> 1, so y > 1, and x−q2 = db2 implies that

db2 = 3q4−6q2−1
4

. (13)

Case 2.

3= 2a±(2x+q2), q4 = 2a∓(2x+q2). (14)

As in Case 1 we get the nontrivial solution

x = 3q4−2q2−1
4

, a= 3q4+1
4

, db2 = 3q4−6q2−1
4

. (15)



ON THE DIOPHANTINE EQUATION x3 = dy2±q6 495

Now suppose the second possibility. Obviously a is odd and x2 ≡ 3a2 (modq), and

since (q,a)= 1, so the Legendre symbol (3/q)= 1, hence q ≡±1 (mod12). Eliminating

x and dividing by 3, we get

a2 = q4+3db2(q2+db2). (16)

Considering (16) modulo 8 we get either db2 ≡−1 (mod8) or db2 ≡ 0 (mod8).
(1) db2 ≡−1 (mod8). Then from (16) we get

3d2b4 = (2a+2q2+3db2)(2a−2q2−3db2). (17)

Let S be a common prime divisor of the two factors in the right-hand side of (17), then

S is odd, S | 4a and S | 2(2q2+3db2). But S2 divides the left-hand side implies that

S | 3db2, so S | q2. Here S = 1, otherwise x−q2 = 3db2 implies that q | x which is not

true. Thus from (17) we get

2a±(2q2+3db2)= d2
1b

4
1, 2a∓(2q2+3db2)= 3d2

2b
4
2, (18)

where d= d1d2 and b = b1b2. Whence

±2
(
2q2+3db2)= d2

1b
4
1−3d2

2b
4
2. (19)

Considering this equation modulo 3, we get

4q2 = d2
1b

4
1−3d2

2b
4
2−6db2. (20)

Now we prove that d1 = 1. Since d is odd, therefore d1 must be odd. Let t be any odd

prime dividing d1 then by hypothesis t ≡ 2 (mod3) but then from (20) we get

4q2 ≡−3d2
2b

4
2 (modt), (21)

so (−3/t)= 1, which is not true. Thus d1 = 1 and (20) becomes

q2 = b4
1−3

(
b2

1+db4
2

2

)2

, (22)

since (q,b1)= 1, therefore by Lemma 1, q ≡±1 (mod24).
(2) db2 ≡ 0 (mod8). Now we prove that if (16) has a solution, then q ≡ ±1

(mod24). Since d is a square free, b should be even. Suppose b = 2m, then (16) can

be written as

12d2m4 = (a+q2+6dm2)(a−q2−6dm2). (23)

As before we can prove that the common divisor of the two factors in the right-hand

side of (23) is 2, so

a±(q2+6dm2)= 2d2
1m

4
1, a∓(q2+6dm2)= 6d2

2m
4
2, (24)

where d = d1d2 and m =m1m2. It is clear that (a,q) = 1 implies that (m1,q) = 1.



496 FADWA S. ABU MURIEFAH

Subtracting the two equations in (24) we get

±(q2+6dm2)= d2
1m

4
1−3d2

2m
4
2, (25)

again considering this equation modulo 3, we get q2 = d2
1m

4
1 − 3d2

2m
4
2 − 6dm2. As

before d1 cannot have any odd prime divisor, so d1 = 1 or 2.

If d1 = 1, then

q2 = 4m4
1−3

(
m2

1+dm2
2

)
. (26)

Here m1 is odd, otherwise we get a contradiction modulo 8. Since (m1,q) = 1, then

from (26) we get

2m2
1±q = 3s2, 2m2

1∓q =n2, (27)

where sn =m2
1+dm2

2, so s and n are both odd. Hence q ≡ ±1 (mod8), combining

this result with q ≡±1 (mod12), we get q ≡±1 (mod24).
If d1 = 2, then

q2 = 16b4
1−3

(
b2

1+db2
2

)2
(28)

which is impossible modulo 8.

Using the same argument as in Theorem 2 we can prove the following theorem.

Theorem 3. Let d be a positive integer without prime factor p ≡ 1 (mod3) and

q ≠ 3 an odd prime. If q �±1 (mod24) and (x,q)= 1, then the Diophantine equation

x3 = dy2−q6 has exactly two solutions given by

x1 = 3q4+2q2−1
4

, y = ab, where a= 3q4+1
4

, db2 = 3q4+6q2−1
4

,

x2 = q
4+2q2−3

4
, y = 9ab, where a= q

4+3
4

, db2 = q
4+6q2−3

4
.

(29)

Sometimes, combining our results with Cohn’s result [1] we can solve the title equa-

tion completely when d has no prime factor ≡ 1 (mod3), as we show in the following

example.

Example 4. Consider the Diophantine equationx3 = dy2±56 whered has no prime

factor ≡ 1 (mod3) and (5,d)= 1.

Here q = 5, when (x,5) = 1, using Theorem 2 for the positive sign this equation

has only two solutions given by x1 = 456, db2 = 431, and x2 = 143, db2 = 118. So

d= 431,118. Now let 5 | x, then because (5,d)= 1, the equation reduces to the form

x3 = 5dy2+1, which by [1, Theorem 1] has no solution in positive integers.

So the equation x3 = dy2+56 has a solution only if d= 431,118.

For the negative sign this equation has two solutions when (x,5)= 1 given by

x1 = 481, db2 = 506, x2 = 168, db2 = 193, (30)

that is, whend= 506,193. If 5 | x, then the equation reduces to the formx3=5dy2−1,

which by [1, Theorem 2] has no solution in positive integers.
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