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Abstract. We study the ramifications of Schur’s theorem that, if G is a group such that
G/ZG is finite, then G′ is finite, if we restrict attention to nilpotent group. Here ZG is the
center of G, and G′ is the commutator subgroup. We use localization methods and obtain
relativized versions of the main theorems.
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1. Introduction. The theorem to which we refer is that which asserts that if G is a

group and ZG is its center, then

G/ZG finite G′ finite, (1.1)

where G′ is the commutator subgroup of G. This theorem has a nice homological

proof, using the 5-term exact sequence

H2G
α4

H2
(
G/ZG

) α3
ZG

α2 Gab
α1 (

G/ZG
)
ab (1.2)

derived from the short exact sequence ZG � G � G/ZG. For if G/ZG is finite then

H2(G/ZG) is finite. Thus G′∩ZG = kerα2 = imα3 is finite. But G′/G′∩ZG ⊆G/ZG is

also finite, so, finally, G′ is finite.

We remark that Schur’s theorem has a converse which is valid if G is finitely gener-

ated (fg). We include a proof for completeness.

Theorem 1.1. Let G be an fg group such that G′ is finite. Then G/ZG is finite.

Proof. Let G = 〈x1,x2, . . . ,xk〉. Now, for any x ∈G, there can only be finitely many

distinct conjugates of x. For there is a one-one correspondence

y−1xy x−1y−1xy (1.3)

between the set of conjugates of x and a subset of G′; and G′ is finite. Thus [G : CGx]
is finite for all x ∈G, where CGS is the centralizer in G of the subset S of G. But if each

[G : CGxi], 1≤ i≤ k, is finite, so is [G :∩iCGxi]. On the other hand, ∩iCGxi = ZG, so

[G : ZG] is finite. Thus, as claimed, G/ZG is a finite group.

Schur’s theorem, and its converse, take on a particular significance in the localiza-

tion theory of nilpotent groups [1]. For it is one of the main problems in that theory to
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calculate the Mislin genus �(G) of an fg nilpotent group G and to identify its mem-

bers. Here �(G) is the set of isomorphism classes of fg nilpotent groups H such that

G and H localize at every prime p to isomorphic groups, Gp �Hp for all primes p. It

is shown in [2, 3] that if G′ is finite then �(G) may itself be given the structure of a

(finite) abelian group, a fact which very much facilitates the study of �(G).
In the category of nilpotent groups (not necessarily fg) it makes sense to consider

P -torsion groups, where P is a family of primes, and to study such groups by the

techniques of localization. In this way we are able to prove a P -torsion variant of

Schur’s theorem, namely,

Theorem 1.2. Let G be a nilpotent group such that G/ZG is a P -group. Then G′ is

a P -group.

We may also prove a converse of Theorem 1.2; as with Schur’s theorem itself, it is

necessary to impose a supplementary finiteness condition.

Theorem 1.3. Let G be a nilpotent group such that G′ is a P -group of exponent m.

Then G/ZG is a P -group of exponent dividing mc−1, where nilG = c.

Actually we regard Theorems 1.2 and 1.3 as the absolute forms of our results and

emphasize the relative forms which appear to be quite new. In our relativization we

replace the group G by a pair (G,N) consisting of a nilpotent group G and a normal

subgroup N of G. Then the absolute case is given by N = G; moreover, in our rela-

tivization, ZG is replaced by CG(N), which is easily seen to be a normal subgroup of

G; and G′ is replaced by the commutator group [G,N].
We remark that Theorem 1.2 also has a variant in which a finiteness condition is

imposed just as in Theorem 1.3. Precisely, we have the following theorem.

Theorem 1.4. LetG be a nilpotent group such thatG/ZG is a P -group of exponentm.

Then G′ is a P -group of exponent dividing mc−1, where nilG = c.

We will prove the relativizations of Theorems 1.2, 1.3, and 1.4 in Section 2. Proofs

of the absolute forms, that is, of Theorems 1.3 and 1.4 are to be found in [4]. For

Warfield proves (the case n= 1 is the critical case).

(a) If Γn+1 has exponentm, thenG/ZnG has exponent dividingmc−n (see [4, Corol-

lary 2.6]); and

(b) ifG/ZnG has exponentm, then Γn+1 has exponent dividingmc−n (see [4, Corol-

lary 3.16]).

Here we adopt Warfield’s convention that Γ2 =G′ and Z1 = ZG.

We do not have available to us a homological proof of a relative version of Schur’s

theorem. However we do show in the appendix how we may use homological argu-

ments to obtain Theorem 1.4 with a small loss of sharpness in our bound on the

exponent of G′.
A key tool in our proof of the relative version of Theorem 1.3 is a theorem on the

localization of nilpotent groups due to Karl Lorensen (Theorem 2.6). This theorem is

of considerable interest in its own right. It is a pleasure to acknowledge the crucial

help the author received from his friend (and erstwhile student) Karl Lorensen, not

only in the provision of Theorem 2.6.
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2. Localization methods. Let P be a family of primes and letQ be the complemen-

tary family. We first state and prove the relativization of Theorem 1.2.

Theorem 2.1. Let G be a nilpotent group and N a normal subgroup such that

G/CG(N) is a P -group. Then [G,N] is a P -group.

Proof. Let e :G→GQ localize at the family Q. Now e maps CG(N) into CGQ(NQ);
moreover, CGQ(NQ) isQ-local. Thus, in fact, theQ-localization CG(N)Q of CG(N)must

be a subgroup of CGQ(NQ), that is,

CG(N)Q ⊆ CGQ
(
NQ
)⊆GQ. (2.1)

Now since G/CG(N) is a P -group, (G/CG(N))Q = 1, so that GQ = CG(N)Q. Hence, by

(2.1) GQ = CGQ(NQ). Thus every element of GQ commutes with every element of NQ,

so that [GQ,NQ]= 1. But [GQ,NQ]= [G,N]Q, so [G,N] is a P -group.

It is clear from this line of proof that, if we want a result in the opposite direction

to that of Theorem 2.1, we will have to establish conditions under which

CGQ
(
NQ
)= CG(N)Q. (2.2)

Put another way, we ask when the restriction e0 : CG(N) → CGQ(NQ) of the Q-

localization e :G→GQ itselfQ-localizes. Now certainly e0 isQ-injective and CGQ(NQ)
is Q-local. Thus e0 Q-localizes if and only if it is Q-surjective.

In seeking conditions under which e0 is Q-surjective—and again in proving

Lorensen’s theorem (Theorem 2.6), we need to apply a basic result in [1], namely,

Theorem 6.1. We quote that result here as Lemma 2.2.

Lemma 2.2 (see [1, Theorem 6.1]). Let G be a nilpotent group with nilG = c and let

a,b ∈G with bm = 1. Then (ab)mc = amc .

However, we can, in fact, refine this result and it will be valuable to do so. Thus we

may enunciate

Lemma 2.3. If, in addition, b ∈ Γ iG, then (ab)mc−i+1 = amc−i+1
.

(Recall that we adopt Warfield’s convention for enumerating the terms of the lower

central series of G, so that Γ 1G =G, Γ 2G =G′.)

Proof of Lemma 2.3. We apply Lemma 2.2, but replace G by 〈a,b〉. However, if

b ∈ Γ iG then nil〈a,b〉 ≤ c−i+1.

We now apply Lemma 2.2 (we will need the more refined Lemma 2.3 later) to prove

the following theorem.

Theorem 2.4. Let G,H be nilpotent groups with subgroups Ḡ ⊆ G, H̄ ⊆ H. Let ϕ
be a Q-bijective homomorphism from G to H sending Ḡ into H̄, and let ϕ̄ : Ḡ→ H̄ be

obtained by restricting ϕ. Then ϕ̄ is Q-surjective (and hence Q-bijective) if and only if,

for all x ∈G such that ϕx ∈ H̄, there exists a P -number m such that xm ∈ Ḡ.

Proof. We for brevity, describe the property that, for all x ∈ G such that

ϕx ∈ H̄, there exists a P -number m such that xm ∈ Ḡ as property S. Suppose
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then that ϕ̄ is Q-surjective, and let x ∈ G satisfy ϕx ∈ H̄. Since ϕ̄ is Q-surjective,

there exists a P -number n and an element x̄ ∈ Ḡ such that ϕ̄x̄ = ϕxn. But then

xn = x̄z, z ∈ G with zk = 1 for some P -number k, since ϕ is Q-injective. Let

nilG = c. Then, by Lemma 2.2, xnkc = x̄kc ∈ Ḡ and nkc is a P -number, establishing

property S.

Suppose, conversely, that property S holds and let y ∈ H̄. Since ϕ is Q-surjective,

there exists a P -number n and x ∈ G such that ϕx = yn. Thus, by property S, there

exists a P -number m such that xm ∈ Ḡ. Then ϕ̄(xm)= ymn and mn is a P -number,

so ϕ̄ is Q-surjective.

Corollary 2.5. The restriction e0 : CG(N)→ CGQ(NQ) Q-localizes if and only if, for

all x ∈G such that ex ∈ CGQ(NQ), there exists a P -number n such that xn ∈ CG(N).
This result enables us to exploit the following theorem due to Karl Lorensen. With

G a nilpotent group, N a normal subgroup of G, and x ∈G, we write TP Γ 2
〈x〉N for the

P -primary component of the torsion subgroup of Γ 2
〈x〉N , which is a subgroup of N

generated by commutators [xr ,a], a∈N . We then prove the following theorem.

Theorem 2.6 (Lorensen). Let e0 : CG(N)→ CGQ(NQ) be obtained by restricting the

Q-localization e :G→GQ. Then e0 Q-localizes provided that, for all x ∈G, TP Γ 2
〈x〉N has

finite exponent.

Proof. (This is a small but significant modification of Lorensen’s proof, since it

exploits Lemma 2.3.) We will apply Corollary 2.5. Thus we must show that, for allx ∈G
such that ex ∈ CGQ(NQ), there exists a P -number n such that xn ∈ CG(N). Now let

m = expTpΓ 2〈x〉N , and let y ∈ N . Then m is a P -number and e[x,y] = [ex,ey] = 1,

since ex ∈ CGQ(NQ). Hence [x,y]∈ TP Γ 2〈x〉N , so [x,y]m = 1.

Now x[x,y]=y−1xy . Hence, by Lemma 2.3, noting that [x,y]∈ Γ 2G, we conclude

that xmc−1 = (y−1xy)mc−1 = y−1xmc−1y , where nilG = c. Since y is an arbitrary

element of N , it follows that xmc−1 ∈ CG(N) and Theorem 2.6 is proved.

Remark 2.7. Notice that it would have sufficed to assume that TP Γ 2〈x〉N has finite

exponent for all x ∈G such that ex ∈ CGQ(NQ).
Lorensen’s theorem is the key to our relativization of Theorem 1.3, which we now

state.

Theorem 2.8. Let G be a nilpotent group and N a normal subgroup of G. Then if

[G,N] is a P -group of exponent m, G/CG(N) is a P -group of exponent dividing mc−1,

where nilG = c.

Proof. Since Γ 2
〈x〉N ⊆ [G,N], and [G,N] is a P -group of exponent m, it follows

that we have the conditions for applying Lorensen’s theorem, so that e0 : CG(N) →
CGQ(NQ) Q-localizes. Now since [G,N] is a P -group, its Q-localization vanishes, that

is, [GQ,NQ] = 1. This means that GQ = CGQ(NQ), so that every x ∈ G has the prop-

erty that ex ∈ CGQ(NQ). Moreover, expΓ 2
〈x〉N divides m. Thus, following the proof of

Theorem 2.6, we see that xmc−1 ∈ CG(N) for all x ∈G, so that exp(G/CG(N)) |mc−1.

This, of course, implies that G/CG(N) is a P -group.

Remark 2.9. This last implication follows immediately fromGQ=CGQ(NQ)=CG(N)Q.
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It remains to provide the relativization of Theorem 1.4. In fact, we may simply rel-

ativize each step in Warfield’s argument in [4, Corollary 3.16], thus obtaining the fol-

lowing theorem.

Theorem 2.10. Let G be a nilpotent group and N a normal subgroup such that

G/CG(N) is a P -group of exponent m. Then [G,N] is a P -group of exponent dividing

mc−1, where nilG = c.

Appendix

Homological methods. We show in this appendix how homological arguments may

be used to obtain Theorem 1.2, although the numerical estimate is marginally inferior

to that given by Theorem 1.4. We emphasize that we have only succeeded in develop-

ing a homological method in the absolute case.

We begin with a crucial homological lemma.

Lemma A.11. Let G be a nilpotent group with nilG = c and let n≥ 1. If G is a torsion

group with expG =m, then mn(c−1)+1HnG = 0.

Proof. We argue by induction on c. If c = 1, then G is commutative. If K is an arbi-

trary fg subgroup ofG, thenK is a direct product of (finitely many) finite cyclic groups

whose orders divide m, hence mHnK = 0. Now HnG = lim �→
KHnK, so that mHnG = 0.

Now we assume c ≥ 2, and assume the lemma proved for nilpotent groups of class

< c. We consider the central extension

Γ G G/Γ , (A.3)

where Γ = Γ cG, and we exploit the Lyndon-Hochschild-Serre spectral sequence associ-

ated with (A.3). In this spectral sequence

E2
pq =Hp

(
G/Γ ;HqΓ

)
. (A.4)

Since the universal coefficient formula in homology splits, and since nilΓ = 1, nilG/Γ =
c−1, and expΓ |m, exp(G/Γ) |m, it follows from the inductive hypothesis that, if

p+q > 0,

mE2
pq = 0, q > 0, mp(c−2)+1E2

p0 = 0. (A.5)

(The form of writing in (A.5) and in what follows is acceptable since homology groups

and Erpq are additive abelian groups.)

We may then pass to the limit of the spectral sequence, obtaining

mE∞pq = 0, q > 0, mp(c−2)+1E∞p0 = 0. (A.6)

Now HnG admits a finite filtration

0= F−1 ⊆ F0 ⊆ ··· ⊆ Fp−1 ⊆ Fp ⊆ ··· ⊆ Fn−1 ⊆ Fn =HnG, (A.7)

such that

Fp/Fp−1 = Epq∞ , p+q =n, 0≤ p ≤n. (A.8)



460 PETER HILTON

From (A.6) and (A.8) an easy finite induction shows that

mp+1Fp = 0, 0≤ p ≤n−1. (A.9)

Finally, we exploit the short exact sequence

Fn−1 HnG E∞n0 (A.10)

to infer that mn+n(c−2)+1HnG = 0, or mn(c−1)+1HnG = 0, completing the inductive

step.

Armed with this lemma, we may prove the following theorem.

Theorem A.12. Let G a nilpotent group with nilG = c. Then if G/ZG is a torsion

group of exponent m, G′ is a torsion group of exponent dividing m2c−2.

Proof. We exploit the exact sequence (1.2) and the argument used to prove Schur’s

theorem. Since nilG/ZG = c−1, we know from Lemma A.11 that

m2(c−2)+1H2
(
G/ZG

)= 0. (A.11)

Thus

m2(c−2)+1(G′ ∩ZG)= 0. (A.12)

Now G′/G′ ∩ZG ⊆ G/ZG, so exp(G′/G′ ∩ZG) |m. Putting this together with (A.12),

we deduce finally that G′ is a torsion group and expG′ |m2c−2.

We remark (again) that our estimate of expG′ is not best possible.
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