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Two submanifolds of Euclidean n-space En are called super parallel if the affine normal
spaces are homothetic at the corresponding points. Characterizations are given for the
action of conformal transformation on super parallel mates. Our notion is generalized
to super transnormal submanifolds and its relation with super self-parallel submanifolds
and convex super self-parallel submanifolds.
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1. Introduction. The notion of parallel and self-parallel smooth immersions f , g
of the smooth manifold M into Euclidean n-space En has been introduced by Farran

and Robertson in [2]. Let f :M → En be a smooth immersion of anm-manifoldM into

Euclidean n-space En, n−m= k > 0 is the codimension of M . For any x ∈M , the tan-

gent map at x is a linear map Txf : TxM → TyEn = En under the usual identification,

f(x) = y . We denote by Lf,x = Txf(TxM) the image of TxM as a linear subspace of

En whose dimension is the rank of f at x, and by LNf,x its orthogonal complement. The

corresponding affine subspaces give the tangent spaces τf (x)= {f(x)}+Lf,x and the

normal spaces νf (x)= {f(x)}+LNf,x to f at x. The two immersions f , g :M → En are

called parallel, denoted by f‖g, if for every x ∈M , νf (x)= νg(x). A diffeomorphism

J :M →M of the domain of f :M → En is called a self-parallelism of f , if f and f ◦J
are parallel. For more details see [1, 2, 3, 5].

2. Super parallel immersions

Definition 2.1. Two immersions f ,g :M → En are called super parallel, denoted

by f ‖s g if for every x ∈M , there exists homothety map hλ, λ≠ 0,

hλ : νf (x) �→ νg(x) given by hλ(ξ)= λξ. (2.1)

According to this definition, any two parallel immersions in a Euclidean space are

super parallel immersions. The converse is not always true, for example, the conformal

transformations of any two concentric spheres are super parallel submanifolds but

not parallel submanifolds. We denote by C = C∞(M,En) the set of all smooth maps

f :M → En. This is a real linear space. Let IkM denote the subset of C consisting of all

immersions of M in En.

It is easy to see that the inverse of a homothety is also a homothety and the com-

posite of a homothety of ratio λ1 and a homothety of ratio λ2 is a homothety of ratio

λ1λ2. Then we have the following proposition.

Proposition 2.2. The relation ‖s is an equivalence relation on IkM .
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We will denote the super parallelism class of f by [f ]s . Now we can form the affine

hull A(f)s of [f ]s for any f in C . Thus A(f)s is the smallest affine subspace of C that

contains [f ]s . By the same procedure as in [2] we can prove that [f ]s = IkM∩A(f)s .
We generalize some properties that are well known in the parallel case (see [3, 5]) to

our consideration. Let ∇̄ denote the directional derivative in En. A normal field η in

the normal bundle of f is called parallel if ∇̄uη is tangential, for all u∈ TxM (see [5]).

Lemma 2.3. The two immersions f and g ofM into En are super parallel if and only

if the vector field given by η(x)= g(x)−(Rg,θ◦f)(x) is a parallel section of the normal

bundle of f , where θ(x) is the directed angle between the vector r(x) = g(x)−f(x)
and the normal of f at x, and Rg,θ is the rotation mapping about g(x) through θ.

Proof. Let f , g be super parallel immersions in the Euclidean n-space En and

θ(x) is the angle between the vector r(x) = g(x)−f(x) and the normal vector of f
at x. Then we can define a rotation map Rg,θ to f(x) about g(x) through directed

angle θ, such that η(x) = g(x)−(Rg,θ ◦f)(x) is a section of the normal bundle of f
at x and (Rg,θ ◦f), g are parallel immersions in En. Hence by [5, Lemma 1] η(x) =
g(x)−(Rg,θ ◦f)(x) is a parallel section of the normal bundle of f .

Conversely, let η(x) = g(x)− (Rg,θ ◦ f)(x) be a parallel section of the normal

bundle of f , then from [5, Lemma 1] (Rg,θ ◦ f), g are parallel immersions in En

and consequently νg(x) = νRg,θ◦f (x). Then if ξ ∈ νg(x), there exists ζ ∈ νRg,θ◦f (x)
such that ξ(x) = ζ(x). Since ζ(x) ∈ νRg,θ◦f (x), hence there exists λ ≠ 0 such that

λζ(x)∈ νf (x). Thus we can define a homothety map hλ,

hλ : νg(x) �→ νf (x), ξ(x) � �→ λξ(x). (2.2)

Then f , g are super parallel immersions in the Euclidean n-space En.

Proposition 2.4. If the two immersions f and g of M into En are super parallel,

then ‖g(x)−(Rg,θ ◦f)(x)‖ = constant.

Proof. Let f , g be super parallel immersions in the Euclidean n-space En. Then

from Lemma 2.3 η(x)= g(x)−(Rg,θ ◦f)(x) is a parallel section in the normal bundle

of f , that is, ∇̄uη is tangential, then

∇̄u
∥
∥g(x)−(Rg,θ ◦f

)
(x)

∥
∥2 = ∇̄u

∥
∥η(x)

∥
∥2 = ∇̄u

〈
η(x),η(x)

〉

= 2
〈∇̄uη(x),η(x)

〉= 0.
(2.3)

Hence ‖g(x)−(Rg,θ ◦f)(x)‖ = constant.

Example 2.5. (1) Any two circles (hyperspheres) in En are super parallel immer-

sions.

(2) Let M be an immersed submanifold in the Euclidean space En, and let M̃ be the

reflection of M with respect to the origin 0, which is not inside M . Then M and M̃ are

super parallel immersed submanifolds in Euclidean space En.

(3) Let M̄ be the translation of M by a ratio µ in the Euclidean n-space En. Then M
and M̄ are super parallel immersed submanifolds in Euclidean space En.

Theorem 2.6. Let f , g : M → En be super parallel immersions in the Euclidean

n-space En, then the immersed submanifolds f(M) and g(M) are diffeomorphic.
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Proof. Let f , g : M → En be two super parallel immersions in En, then from

Lemma 2.3 there exists a parallel section η(x) in the normal bundle of f , such that

g(x)= (Rg,θ ◦f
)
(x)+η(x) ∀x ∈M. (2.4)

Define a function

J : f(M)⊂ En �→ g(M)⊂ En (2.5)

given by

J
(
f(x)

)= (Rg,θ ◦f
)
(x)+η(x)= g(x). (2.6)

It is obvious that this function is differentiable. Also we can define a function

J∗ : g(M) �→ f(M) (2.7)

given by

J∗
(
g(x)

)= R−1
g,θ
(
g(x)−η(x))= f(x), (2.8)

which is also differentiable and

J ◦J∗(g(x))= J(R−1
g,θ
(
g(x)−η(x)))

= Rg,θ
(
R−1
g,θ
(
g(x)−η(x)))+η(x)

= g(x)−η(x)+η(x)= g(x),
J∗ ◦J(f(x))= J∗((Rg,θ ◦f

)
(x)+η(x))

= R−1
g,θ
((
Rg,θ ◦f

)
(x)+η(x)−η(x))= f(x).

(2.9)

Then J ◦J∗ = I and also J∗ ◦J = I. Hence J is a diffeomorphism, and g(M) is diffeo-

morphic to f(M).

Corollary 2.7. Let f , g :M → En be parallel immersions in the Euclidean n-space

En, then the immersed submanifolds f(M) and g(M) are diffeomorphic.

Now we investigate the action of conformal transformation on super parallel mates

in Euclidean space.

In the parallel case the conformal transformation F preserved on parallel section

but not preserved on parallel mates (see [4]). In our consideration we prove that the

super parallel mates are preserved under conformal transformation.

Theorem 2.8. The super parallel mates are preserved under conformal transfor-

mation of the ambient Euclidean space.

Proof. Let f , g be super parallel immersions in En. Then we can define a homo-

thety map hλ by λ≠ 0,

hλ : νf (x) �→ νg(x) given by hλ(ξ)= λξ,

νf (x)

F

hλ νg(x)

F

νF◦f (x)
h∗λ νF◦f (x)

(2.10)
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The conformal map transfers the normal vector field on f to a normal vector field on

F ◦f (see [6]). Then from the above diagram we can define a homothety map

h∗λ : νF◦f (x) �→ νF◦g(x), h∗λ (ξ
∗)= λξ∗, (2.11)

which means that (F ◦f)‖s(F ◦g) and this completes the proof.

3. Super self-parallel curves. Let f : M → En be an immersion. We say that f is

transnormal if, for everyx ∈M , νf (x)= νf (y), whenever f(y)∈ νf (x). Let J :M →M
be a diffeomorphism of the domain of f , then J is called self-parallelism of M with

respect to f if f and f ◦J are parallel (see [1]).

Definition 3.1. Let f :M → En be an immersion. We say that f is super transnor-

mal if, for every x ∈M , there exists a unique point y ∈M such that νf (x) and νf (y)
are homothetic, hλ : νf (x)→ νf (y), λ≠ 0 whenever f(y)∈ hλ(νf (x)).

Homothety constant λ= 1 implies the definition of transnormality given in [1]. Then

transnormal immersions in Euclidean space En are super transnormal. The general

oval and ellipsoid are simple examples for super transnormal immersions which are

not transnormal.

Definition 3.2. A diffeomorphism J :M →M of the domain of f :M → En is called

a super self-parallelism of f , if f and f ◦J are super parallel.

Now we generalize some properties which exist in [1] to our consideration.

Proposition 3.3. Any convex super self-parallel embedding f : Sn→ En+1 is super

transnormal.

Proof. Since f(Sn) is convex super self-parallel, Lf,x is the tangent plane of f at

f(x), then there exists a unique point f(y) such that Lf,y =±Lf,x . Then LNf,y =±LNf,x .

Let J be nontrivial super self-parallelism of Sn with respect to f and x ∈ Sn, then there

is a homothety map hλ by λ≠ 0

hλ : νf (x) �→ νf◦J(x) given by hλ(ξ)= λξ. (3.1)

Hence we can define the homothety function hλ such that hλ : νf (x)→ νf (y), where

y = J(x) and f(y)∈ hλ(νf (x)). Then f is super transnormal.

Theorem 3.4. Let f : S1 → E2 be an embedding. Then f is super transnormal if and

only if it is super self-parallel.

Proof. Let f : S1 → E2 be super transnormal. Then if ξ is normal atx, there exists a

unique point y ∈ S1 such that hλ(ξ) is normal at the point y , where hλ is a homothety

map. So we can define a diffeomorphism J : S1 → S1 and consequently we can define a

homothety map hλ : νf (x)→ νf◦J(x) such that hλ(ξ)= λξ ∈ νf◦J(x). Then f is super

self-parallel curve. The proof of the converse by the same procedure as in [1].

Theorem 3.5. Any convex embedding curve f : S1 → E2 is a super transnormal

curve.
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Proof. Let f be a closed convex plane curve and p any point on S1, Lf,p is the

tangent of f at p. Then there exists p̄ ∈ S1, such that Lf,p =±Lf,p̄ . Then LNf,p =±LNf,p̄ .

Thus we can define a homothety map hλ by λ≠ 0

hλ : νf (p) �→ νf (p̄) given by hλ(ξ)= λξ. (3.2)

Then f is super transnormal.

Corollary 3.6. Any convex embedding curve f : S1 → E2 is a super self-parallel

curve.

Proof. Let f be a convex embedding, then from Theorem 3.5 it is super transnor-

mal, and from Theorem 3.4 the curve which is super transnormal is super self-parallel

curve.
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