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THE CAYLEY TRANSFORM OF BANACH ALGEBRAS
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The main result of Haynes (1991) is that a square matrix is convergent (limn→∞Dn = 0)
if and only if it is the Cayley transform CA = (I−A)−1(I+A) of a stable matrix A. In this
note, we show, with a simple proof, that the above is true in a much more general setting
of complex Banach algebras.
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A square matrix D is called convergent if limn→∞Dn = 0, or equivalently,

limn→∞‖Dn‖ = 0, where ‖·‖ denotes the matrix norm. A square matrix is called sta-

ble if its characteristic values all have negative real parts. The above definitions can

be generalized to elements in general complex Banach algebras as follows: let � be

a complex Banach algebra with norm ‖ · ‖, and let σ(T) be the spectrum of T and

r(T) the spectral radius of T for any T ∈ �. An element D ∈ � is called convergent

if limn→∞‖Dn‖ = 0 and an element A ∈� is called stable if σ(A) is contained in the

open left half of the complex plane. Inspired by the work of Stein and Taussky [3, 4]

and Haynes [2] shows that a square matrix is convergent if and only if it is the Cayley

transform of some stable matrix. In this note, we show that this holds for any complex

Banach algebra and our proof is much simpler than that of [2].

To this end, we need the following elementary lemma.

Lemma 1. Let D ∈�, then D is convergent if and only if r(D) < 1.

Proof. (⇒). First, we show that if T ∈ � is convergent then I − T is invertible.

Suppose T is convergent, choose a fixed n large enough such that ‖Tn‖ < 1. Then

I−Tn is invertible. Since I−Tn = (I−T)∑n−1
k=0 Tk, it follows that I−T is invertible.

Now, note that if D is convergent then so is (1/t)D for any complex number t such

that |t| ≥ 1. Thus I−(1/t)D is invertible. Therefore, tI−D is invertible. This implies

that r(D) < 1.

(⇐). Suppose r(D) < 1. Then choose a fixed ε > 0 such that r(D)+ ε < 1. For n
large enough, we have ‖Dn‖1/n < r(D)+ε. Thus, ‖Dn‖< (r(D)+ε)n. Therefore, D is

convergent.

For any stable element A ∈�, I−A is invertible. In this case, we define the Cayley

transform of A as CA = (I−A)−1(I+A).
Theorem 2. For any complex Banach algebra �, an element D ∈� is convergent

if and only if D = CA for some stable A∈�.

Proof. (⇐). If D = CA for some stable A ∈ �, let f(z) = (1+ z)/(1− z). Then

f(z) is analytic in the open left half of the complex plane. In fact, f(z) is a Möbius
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transform that maps the open left half of the complex plane onto the open unit disk

and f(A) = CA. Since f(z) is analytic in a neighborhood of σ(A). By the Spectral

Mapping theorem (see [1, page 208]), σ(f(A))= f(σ(A)). Since f(σ(A)) is contained

in the open unit disk, σ(D)= σ(f(A)) is contained in the open unit disk. By Lemma 1,

D is convergent.

(⇒). SupposeD is convergent. By Lemma 1, σ(D) is contained in the open unit disk.

ThusD+I is invertible. LetA= (D+I)−1(D−I). Define g(z)= (z−1)/(z+1). The map

g(z) is analytic in the open unit disk. In fact, g(z) is a Möbius transform that maps the

open unit disk onto the open left half of the complex plane and g(D) = A. Similarly,

by the Spectral Mapping theorem, we can obtain σ(A) = σ(g(D)) = g(σ(D)). This

implies that σ(A) is contained in the open left half of the complex plane, that is, A is

stable. Solving for D from A = (D+ I)−1(D− I), we have D = (I−A)−1(I+A), that is,

D = CA.
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