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ABSTRACT. Additional results are obtained which center around expressions for

the Laplace transforms of functions of the form k(t)F[g(t)]. The finite Laplace

transformation is involved in a number of the formulas. Examples involving

several special cases of g and k are included.

KEY WORDS AND PHRASES. Laplace transformans, General formulas, Bessel
functions,’ ’Parabolic- cylinder funotio ns

AMS (MOS) SUBJECT CLASSFICATION (1970) CODES. Primary 44A10, Secondary 33A40,
33A30.

i. INTRODUCTION.

Expressions for the Laplace transforms of certain composite functions, such

as F(t-l), F(t2), F(et-l), and F(sinh t), have been known and listed in the

tables under "general formulas" for many years. In [i] a formula for

[(k(t) Fig(t)]} was developed and in [2] several special cases, supplementary to

those in the literature, were adjoined to the list. The results contained in this
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paper involve both the Laplace transformation and the finite Laplace transforma-

tion (that is, the integral is over a finite interval). They do not seem to

have appeared in the literature and further, although they are not difficult to

obtain, do not seem to be otherwise well known.

Throughout this work we assume the form

f(s) L{F(t)} foo e_St F(t) dt (i.i)
0

for the Laplace transformation and we use the notations

f(s;(B,y)) L{F(t) [U(t-B) U(t-y)]} f e
-st F(t) dt. (1.2)

for the finite Laplace transformation. (We also allow y .) We refer to the

tables of Roberts and Kaufman [3] throughout and we use the notation [II. 3.2

(4)], for example, to refer to Part II, Section 3.2, Formula 4. The Heaviside

(unit step) function is denoted by U.

2. GENERAL RESULTS.

Since our results are centered around modifications of it, we restate

Theorem i of [i].

-i
THEOREM i. If (i) k, g, and the inverse function h g are analytic,

real on (0,), and such that g(O) 0 and g() (or g(0) and

g(oo) 0); (ii) [{F} f with abscissa of convergence 0; (iii) there

exists a function (s,u), L{(s,u)} (s,p) with abscissa of convergence

0 and

-sh (p)(s,p) e k[h(p)] lh’(p) l; (2.i)

and (iv)
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e
-up

(s u) F(p) du dp
0 0

(2.2)

converges absolutely for Re(s) > a; then

L{k(t) F[g(t)]} foo (s u) f(u) du
0

with abscissa of convergence a.

For our first result we relax the conditions on g from those stated in

Theorem i. In connection with this we introduce the finite Laplace transformation

(1.2). Now if g is strictly monotone on some subinterval of (0,) we have

the following result.

THEOREM 2. Under the hypotheses of Theorem i, except that now let g be

monotone on (b,c) with g(b) B < T g(c) (or with > y), then

/_{k(t) F[g(t)] [U(t-b) U(t-c)]} foo (s u) f(u;(B,y)) du
0

(2.4)

For our second result we modify Theorem i by the introduction of an

adjustment function as follows.

THEOREM 3. Under the hypotheses of Theorem i, except that we assume the

relations

t{F(p)A(p)} f(s;A), I{(s,u;A)} (s,p)/A(p), (2.5)

then

L{k(t) F[g(t)]} foo (s u;A) f(u;A) du
0

(2.6)
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The proofs of Theorems 2 and 3 follow directly the lines of proof given

for Theorem i in [I] and hence they are omitted. Two special cases of Theorem

2 are noted.

COROLLARY 2.1. If in Theorem 2 g[0) 8, g(oo) y, then

i{k(t) F[g(t)]} F #(s,u) f(u;(8,y)) du.
0

(2.7)

COROLLARY 2.2. If in Theorem 2 g(b) O, g(c) oo, then

L{k(t) F[g(t)] [U(t-b) U(t-c)]} (s,u) f(u) du.
0

(2.8)

It should be noted that Theorems 2 and 3 could be combined, in which case

under the joint hypotheses

L{k(t) F[g(t)] [U(t-b) U(t-c)]} (s,u;A) f(u;A;(8,y)) du.
0

(2.9)

where f(u;A; (8,Y)) denotes the finite transform of the product function FA

over the interval

3. SPECIAL RESULTS.

We next turn to some examples for the illustration of those results of

Section 2. Much of the computational detail is straightforward, but often

lengthy, and hence is omitted. A number of substitution relations are obtained

which have not appeared in tables.

atEXAMPLE i. Let g(t) e a > 0, k(t) t. Thus from Corollary 2.1

and [II. 4.2 (2)] we have
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L{tF(eat)} [asF(s/a)] [(s/a+l) log u] f(u; (i,)) du (3.z)

where f(u;(l,)) /{F(t) U(t-l)).

EXAMPLE 2. Let g(t) (t2-a2)1/2
2.2 and [II. 3.2 (46)] it follows that

k(t) (t
2 2)-i12-a From Corollary

L{(t2-a2)-I/2 F((t2-a2) I/2) U(t-a)} s J0(a(u2-s2)I/2) f(u) du. (3.2)

EXAMPLE 3. Let g(t) (t2+a2) I/2 k(t) (t2+a2) -I/2

2.1 and [II. 3.1 (90)] the analog to Example 2 is

From Corollary

L{ (t2+a2)-I/2 F[(t2+a2) I/2) 10(a(u2-s2) I/2) f(u; (a,)) du. (3.3)

EXAMPLE 4. If g(t) t2-+a2, k(t) t2+I, then [II. 3.2 (24)] along

with the exponential shift can be used to obtain

i{t2+I F(t2+a2)}

a2u-s2/8u -9-i2--312-I/2 f e u
0

D2+l[S(2U)-I/2) f(u;(a2 )) du (3.4)

i{t2+I F(t2-a2) U(t-a)}

22-9-3/2-I/2 f= -a2u-s /Su-9-1 (s(2u)e u D2+I0
-i12) f(u) du, (3.5)

where D denotes the parabolic cylinder function.

-at
EXAMPLE 5. If g(t) cosh t, k(t) e from [II. 2 (99)] we have



40 R.G. BUSCHMAN

atL{e- F(cosh t)} Is+a(u) f(u;(l,m)) du.
0

(3.6)

EXAMPLE 6. The choice A(p) (ap+b) n in Theorem 3 introduces an

integration by parts formula; that is, where * denotes convolution, we have

L{k(t) F[g(t)]}

F ((s,u)* [anF(n)] -I un-i e-bu/a) (-aD +b)nf(u) du.
0

u
(3.7)

4. RATIOS OF LINEAR AND UADRATIC EXPRESSIONS.

If we examine the general bilinear (Mbius) substitution, because of the

known formula for /{F(ct)}, it is no restriction to consider only (t-a)/(t-b),

(a-t)/(t-b), and a/(t-b). A number of subcases result. In order to obtain

the following results we use Theorem 2 along with [II. 3.2 (9)] and [II. 3.2

(i0)], with > -i, throughout (4.1) (4.7).

If b>a>0,

L{(t-b)-i F[(t-a)/(t-b)] [i U(t-a)]}

-bs
e
u s)/2e (u (b-a) /

0
JI2(s(b-a)uI/2) f(u;(0,a/b)) du;

if b > a, b > O,

[{ (t-b)-i F[ (t-a) / (t-b) U(t-b)

-bs
e
u / 2

e F (u(b-a)/s)
0

J [2 (s (b-a)u) 1/2) f(u;(l,)) du; (4.2)

if 0>b>a,
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[{ (t-b)V-i F[ (t-a) / (t-b)

IbS
(u (b-a) / s Jve F eu )v/2 (2 (s (b-a) u) I/2) f(u;(l a/b)) du. (4 3)

0

For the three corresponding cases a > b > 0; a > b, a > 0; and 0 > a > b;

must be replaced by Iv, a and b interchanged in the U-functions, (b-a)

replaced by (a-b), and the f’s replaced by f(u;(a/b,)), f(u;(0,1)), and

f(u;(a/b,l)) in (4.1), (4.2), and (4.3) respectively.

If a>b>0,

L{(t-b) v-I F[(a-t)/(t-b)] [U(t-b) U(t-a)]}

e-bS F e-u (u(a-b)/s)V/2 jvi2(s(a_b)u)I/2) f(u) du; (4.4)
0

if a > 0, b < O,

L{(t-b) v-I F[(a-t)/(t-b)][l U(t-a)]}

-bs (u(a-b)/s)e e
-u

0
Jv(2(s(a-b)u)i/2) f(u;(0,-a/b)) du. (4.5)

For the corresponding cases b > a > 0 and b > 0, a < 0 we again change J

to Iv, interchange a and b in the U-function and whenever a-b appears,

and in (4.5) replace f(u;(0,-a/b)) by f(u;(-a/b,)).

If a > 0, b > 0,

[{(t-b)v-I F[a/(t-b)] U(t-b)}

-bs f v/2 [2(asu 1/2)e (au/s) Jv f(u) du;
0

(4.6)
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if a>0, b<0

I{ (t-b)W-I F[a/(t-b)

-bs r )w/2oo
0

J[2(asu) I/2) f(u;(0,-a/b)) du. (4.7)

For a < 0, b > 0 modifications similar to those already discussed can be

applied to (4.7).

For the ratios of quadratic functions it is again no real restriction to

assume special values for some of the coefficients. In general these are messy

and the inverse to (s,p) can not readily be obtained, hence we restrict our

discussion to only a few cases. The two special cases (a/2)t2/(t+c) and

(t/2) (t+2c)/(t+c) have already appeared in [2] the generalization of these to

(t2+at+b) / (t+c) can be obtained.

We let 2 2 _a+/(a2_4bc2-ac+b and for a > 4b we let 2T in order

to simplify notations. Further, we assume c > 0 throughout. If a2 < 0 and

r < 0, we have, after considerable computation,

[{ (t+c)-I- F[ (t2+at+b) / (t+c)

cs -(2c-a)u /2 [2e(u2_su)l/2) f(u.(b/c,)) du;e fs e ((u-s)/o2u) I) (4.8)

if e2 > 0 and T > 0,

l{ (t+c)-I- F[ (t2+at+b) / (t+c) U(t-T)

cs (2c-a)u /2 [2(u2_su)1/2) f(u) du.e /s e- ((u-s)/2u) I (4.9)
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On the other hand, if u2 < 0 the only alteration of the results (4.8) and (4.9)

2
is the replacement of I by J If a < 4b, then for c

2(4.8) is valid, but if u2 > c we have

2 > u2 > 0, formula

[{ (t+c) -I- F[ (t2+at+b) / (t+c) U(t+c-) }

cs s -(2c-a)u /2
e e ((u-s)/2u) I [2u(u2-su) 1/2) f(u;(p,=)) du, (4.10)

where p 2+a-2c.
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