Internat. J. Math. & Math. Sci. Vol. 2 (1979) 45-60

ON THE OVERCONVERGENCE OF CERTAIN SERIES

M. BLAMBERT and R. PARVATHAM

Institut Fourier Mathématiques Pures Boite postale 116 38402 ST MARTIN D'HERES FRANCE

(Received April 27, 1978)

<u>ABSTRACT</u>. In this work, we consider certain class of exponential series with polynomial coefficients and study the properties of convergence of such series. Then we consider a subclass of this class and prove certain theorems on the overconvergence of such a series, which allow us to determine the conditions under which the boundary of the region of convergence of this series is a natural boundary for the function f defined by this series.

<u>KEY WORDS AND PHRASES</u>. LC-Dirichletian element, L-Dirichletian element, Convergence, Overconvergence. AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 30A16, 30A64.

1. INTRODUCTION.

Let us consider the following LC-dirichletian element

$$\{f\}: \sum_{n=1}^{\infty} P_n(x) \exp -\lambda_n s , \qquad (1.1)$$

where $P_n(s) = \sum_{j=0}^{m_n} a_{nj} s^j$, a_{nj} are complex constants with $a_{n,m_n} \neq 0$, $s = \sigma + i\tau$,

 $(\sigma,\tau)\in \mathbf{R}^2$ and (λ_n) is a sequence of complex numbers such that $(|\lambda_n|)$ is a D-sequence. That is to say $(|\lambda_n|)$ is a sequence of positive real numbers satisfying

$$0 < |\lambda_1| < |\lambda_2| < \dots, \lim_{n \to \infty} |\lambda_n| = \infty.$$
(1.2)

$$L = \lim \sup \left\{ \frac{\log n}{|\lambda_n|} / n \in \mathbb{N} - \{0\} \right\}$$
(1.3)

$$A_n = Max \{ |a_{nj}| / j \in (0, 1, ..., m_n) \}$$
 (1.4)

and

Let

$$\beta^* = \lim \sup \left\{ \frac{m_n}{|\lambda_n|} / n \in \mathbb{N} - \{0\} \right\} .$$
(1.5)

Let \mathcal{E}_n be the set of points of \mathbb{C} which are zeros of $P_n(s)$ and $\mathcal{E} = \bigcup \mathcal{E}_n$. Let us denote by \mathcal{E}^d the derived set of \mathcal{E} and $\mathcal{E}_{\infty} = \left\{ s \in \mathbb{C} \mid \underset{(n_j)}{\exists} P_{n_j}(s) = 0 \right\}$ where (n_j) is an infinite subsequence of $\mathbb{N} - \{0\}$ depending on s; let $\mathcal{E}^* = \mathcal{E}^d \cup \mathcal{E}_{\infty}$. \mathcal{E}^* is a closed set. Let us suppose that $\mathbb{C} - \mathcal{E}^*$ is non empty. We put

$$\begin{array}{l} \forall \quad \delta(n,s) = - \frac{\log \left| \mathbb{P}_{n}(s) \exp(-\lambda_{n} s) \right|}{\left| \lambda_{n} \right|} , \mbox{ for sufficiently large } n , \\ s \in \mathbb{C} - \mathcal{E}^{*} \\ \delta_{*}(s) = \lim \inf \left\{ \delta_{n}(s) / n \in \mathbb{IN} - \{0\} \right\} \\ \forall \quad \mathcal{B}_{*\alpha} = \left\{ s \in \mathbb{C} - \mathcal{E}^{*} / \delta_{*}(s) > \alpha \right\} . \\ \alpha \in \mathbb{R} \end{array}$$

In this paper, using a technique similar to that used by M. Blambert and J. Simeon [2], we prove two lemmas for a LC-dirichletian element which enable us to discuss the properties of absolute convergence and uniform convergence for (1.1) in $\mathbb{C}-\mathcal{E}^*$ exclusively. Then we prove Jentzsch's theorem for a L-dirichletian element that is for element of the type (1.1) where λ_n are positive real numbers satisfying (1.2) (λ_n) is a D-sequence) and a theorem on the overconvergence for a L-dirichletian element.

2. MAIN RESULTS.

DEFINITION. - It is said that a function is sub-lipschitzian on an open set, if it is lipschitzian on each compact subset of that open set. LEMMA 1. - Let χ be any compact subset of \mathbb{C} . Then the following assertions are true.

- (1) $\forall \exists \forall$ the function $\& \ni s \rightarrow \delta(n,s)$ is lipschitzian. $\& \subseteq \mathbb{C} - \mathcal{C}^*$ n' $n \ge n'$
- (2) If $\beta^* < \infty$, and if there exists a $s_0 \in \mathbb{C} \mathcal{C}^*$ such that $|\delta_*(s_0)| < \infty$ then the function δ_* is sub-lipschitzian on $\mathbb{C} \mathcal{C}^*$.

PROOF. Let $\forall \quad \varepsilon_{\mathfrak{K}} = \operatorname{dist}(\mathfrak{K}, \mathcal{E}^{*})$. Then it is easy to see that $\forall \quad \forall \quad \exists \quad \forall \quad \{j \in (1, 2, ..., m_{n}) \Rightarrow \alpha_{nj} \notin d_{s, \varepsilon}\},$ $s \in \mathfrak{K} \quad \varepsilon \in]0, \varepsilon_{\mathfrak{K}}[$ n' $n \ge n'$

where $d_{s,\varepsilon}$ is the open disc centred at s and of radius ε and (α_{nj}) , $j \in \{1, 2, ..., m_n\}$, is the sequence of zeros of $P_n(s)$ (with its order of mulplicity is taken into account). More precisely let us show that,

$$\forall \exists \forall \forall \{j \in (1,2,...,m_n) \Rightarrow \alpha_{nj} \notin d_{s,\epsilon} \}.$$

$$s \in]0, \varepsilon_{k}[n' n \ge n' s \in k$$

Let $G_{\varepsilon} = \bigcup_{s,\varepsilon} d_{s,\varepsilon}$. It is evident that $\overline{G}_{\varepsilon}$ the closure of G_{ε} is a compact subset of $\mathbb{C}-\varepsilon^{*}$. Let $\varepsilon' \ni]0, \varepsilon_{\chi} - \varepsilon[$ where $\varepsilon \in]0, \varepsilon_{\chi}[$. The set of discs $d_{s,\varepsilon'}$ indexed by s on $\overline{G}_{\varepsilon}$ is an open covering of $\overline{G}_{\varepsilon}$. Hence we have a finite subcovering ;

implies that
$$\exists s' \in d$$

 $j^* \in (1,...,k)$ s_{j^*}, ϵ' .

$$\begin{array}{cccc} \forall & \exists & \forall & \forall & P_n(s) \neq 0\\ j \in (1, \dots, k) & n' (=n_j) & n \ge n' & s \in d\\ & s_j, \varepsilon' \end{array}$$

and hence

$$\begin{array}{cccc} & \forall & \forall & P_n(s) \neq 0 \\ n \geq \max\{n_j / j \in (1, \dots, k)\} & j \in (1, 2, \dots, k) & s \in d_{s_j}, \varepsilon' \end{array}$$

which gives \forall $P_n(s') \neq 0$. As s is arbitrary on \aleph and $n \ge Max\{n_j/j \in \{1,...,k\}\}$

s' is arbitrary on $d_{s,\varepsilon}$ we have

$$\begin{array}{cccc} \forall & \exists & \forall & \forall & \{j \in (1, \dots, k) \Rightarrow \alpha_{nj} \notin d_{s, \epsilon}\} \\ \epsilon \in]0, \epsilon_{k}[n'(=n_{\epsilon}) & n \ge n' & s \in k \end{array}$$

From which we have

 $\forall \forall v = \log |P_n(s)| - \log |P_n(s')| \le \sum_{j=1}^{m_n} \log \left\{ 1 + \frac{|s-s'|}{|s'-\alpha_{nj}|} \right\} \le \sum_{j=1}^{m_n} \log \left\{ 1 + \frac{|s-s'|}{\varepsilon} \right\}.$

Under the above conditions related to $\ n$, s and s' with $\ s \neq s'$,

$$\begin{split} \left| \delta(\mathbf{n}, \mathbf{s}) - \delta(\mathbf{n}, \mathbf{s}') \right| &\leq |\mathbf{s} - \mathbf{s}'| + \frac{1}{|\lambda_n|} \sum_{j=1}^{m_n} \log \left\{ 1 + \frac{|\mathbf{s} - \mathbf{s}'|}{\epsilon} \right\} \\ &\leq |\mathbf{s} - \mathbf{s}'| + \frac{|\mathbf{s} - \mathbf{s}'|}{\epsilon |\lambda_n|} \sum_{j=1}^{m_n} \left\{ \log(1 + \frac{|\mathbf{s} - \mathbf{s}'|}{\epsilon}) / \frac{|\mathbf{s} - \mathbf{s}'|}{\epsilon} \right\} \\ &\leq |\mathbf{s} - \mathbf{s}'| + \frac{m_n |\mathbf{s} - \mathbf{s}'|}{\epsilon |\lambda_n|} \sup \left\{ \frac{\log(1 + \mathbf{x})}{\mathbf{x}} / \mathbf{x} > 0 \right\}; \\ \text{as} \quad \sup \left\{ \frac{\log(1 + \mathbf{x})}{\mathbf{x}} / \mathbf{x} > 0 \right\} = 1 , \quad |\delta(\mathbf{n}, \mathbf{s}) - \delta(\mathbf{n}, \mathbf{s}')| \leq |\mathbf{s} - \mathbf{s}'| \left\{ 1 + \frac{m_n}{\epsilon |\lambda_n|} \right\} . \text{Putting} \\ \mu_{\epsilon, n} = 1 + \frac{m_n}{\epsilon |\lambda_n|}, \end{split}$$

$$\begin{array}{ccc} \forall & \exists & \forall & \left| \delta(n,s) - \delta(n,s') \right| \leq \mu_{\varepsilon,n} \left| s - s' \right|, \\ \varepsilon \in]0, \varepsilon_{\chi} \left[n' n \ge n' (s,s') \in \mathbb{X} \times \mathbb{X} \right] \end{array}$$

which proves the first part of the lemma.

Now let
$$\mu_{\varepsilon}^* = \limsup_{n \to \infty} \mu_{\varepsilon, n} = 1 + \beta^* / \varepsilon$$
 with $\varepsilon \in]0, \varepsilon_{\chi}[; as \exists \delta_*(s_0) < \infty$
 $s_0 \in \mathbb{C} - \mathcal{E}^*$
 $\forall \forall |\delta_*(s) - \delta_*(s')| \le \mu_{\varepsilon}^* |s - s'|$
 $\varepsilon \in]0, \varepsilon_{\chi}[(s, s') \in \mathbb{X} \times \mathbb{X}]$

and

$$\begin{array}{ll} \forall & \left| \delta_{*}(s) - \delta_{*}(s') \right| \leq \mu_{\varepsilon}^{*} \left| s - s' \right| \\ (s,s') \in \mathfrak{X} \times \mathfrak{X} & \mathfrak{X} \end{array}$$

where

$$\mu_{\varepsilon_{\mathcal{H}}}^{*} = \operatorname{Inf} \{\mu_{\varepsilon}^{*} / \varepsilon \in]0, \varepsilon_{\mathcal{H}}^{}[\} = 1 + \frac{\beta^{*}}{\varepsilon_{\mathcal{H}}}$$

Hence

$$\begin{array}{ccc} \forall & \forall & \left|\delta_{*}(\mathbf{s}) - \delta_{*}(\mathbf{s}')\right| \leq \mu^{*} |\mathbf{s} - \mathbf{s}'|, \\ \kappa \supset \mathbb{C} - \mathcal{E}^{*} & (\mathbf{s}, \mathbf{s}') \in \kappa \times \kappa \end{array}$$

which completes the proof of the lemma.

Under the condition (2) of Lemma 1 , δ_{*} is continuous on $\mathbb{C}-\mathcal{E}^{*}$

which implies that $\mathcal{B}_{*\alpha}$ is an open subset of $\mathbb{C}-\mathcal{E}^*$; but $\mathcal{B}_{*\alpha}$ can have several connected components.

LEMMA 2. - When
$$\beta^* < \infty$$
, then
 $\forall \left\{ \begin{array}{ccc} \vartheta_{*\alpha} \neq \phi \Rightarrow & \forall & \exists & \forall & \forall \\ \alpha \in \mathbf{R} & & & K \subset \beta_{*\alpha} & \beta' > \beta^* n' & n \ge n' & s \in \mathcal{K} \end{array} \right\} = \left\{ \begin{array}{ccc} P_n(s) \exp(-\lambda_n s) & (-\lambda_n s) & (-$

PROOF. Let $\alpha \in \mathbb{R}$ such that $\mathscr{B}_{*\alpha} \neq \varphi$ (otherwise the lemma is trivial) and let \mathscr{K} be a compact subset of $\mathscr{B}_{*\alpha}$. We can easily see that

$$\begin{array}{cccc} \forall & \forall & \exists & \forall & \forall & P_n(s') \neq 0 \\ s \in \mathbb{C} - \mathcal{E}^* & \varepsilon \in]0, dist(s, \mathcal{E}^*)[n'(=n_{s,\varepsilon}) & n \ge n' & s' \in \overline{d}_{s,\varepsilon} & P_n(s') \neq 0 \end{array}$$

where $\overline{d_{c,c}}$ is the closed disc centred at s and of radius ε . Hence

where $\mu_{\varepsilon',n} = 1 + \frac{m_n}{\varepsilon' |\lambda_n|}$. In particular, $\forall \quad \forall \quad \forall \quad |\delta(n,s) - \delta(n,s')| \le \mu_{\varepsilon',n} |s-s'|$, $n \ge n_{\varepsilon'} \quad s \in \mathbb{X} \quad s' \in d_{s,\varepsilon}$

and hence

$$\delta(\mathbf{n},\mathbf{s'}) \geq \delta(\mathbf{n},\mathbf{s}) - \mu_{\varepsilon',\mathbf{n}} |\mathbf{s}-\mathbf{s'}|$$
.

Further $\forall \exists \forall \frac{m_n}{|\lambda_n|} < \beta'$ and $\beta' > \beta^* n'(=n_{\beta'}) n \ge n' \frac{|\lambda_n|}{|\lambda_n|} < \beta'$ and $\forall \forall \forall \forall \forall \delta(n,s') \ge \delta(n,s) - |s-s'|(1+\frac{\beta'}{\epsilon'}) .$ $n \ge \max\{n_{\epsilon'}, n_{\beta'}\} = n_1 s \in \mathbb{X} s' \in d_{s,\epsilon}$

Since K is a compact subset of $\mathcal{B}_{*\alpha}$, $\forall \exists \forall \delta(n,s') > \alpha$; finally we have $s \in \mathfrak{K} n'(=n) n \ge n'$

$$\begin{array}{cccc} \forall & \forall & \forall & \exists & \forall & \delta(n,s') > \alpha - |s-s'|(1+\frac{\beta}{\epsilon}) \\ s \in \kappa \beta' > \beta^* \epsilon' \in] 0, dist(\epsilon^*, \kappa_{\epsilon})[n' n \ge n' s' \in d_{s,\epsilon} \\ \end{array}$$

where
$$\varepsilon$$
 is arbitrary in $]0, \varepsilon_{\chi}[$. The set of discs $d_{s,c}$ indexed by s on
 \varkappa is an open covering for \varkappa and hence $\exists \bigcup_{K \supset (S_1, \dots, S_k)} j=1 \overset{K}{S_{j'}\varepsilon} \supset \varkappa$. Further
we have $\forall \exists s \in d_{S_{j'}\varepsilon}$. Using (2.1) for the particular pair $(s_{j'}, s)$,
sex $j' \in (1...k) \overset{K}{S_{j'}} s \in d_{S_{j'}\varepsilon}$. Using (2.1) for the particular pair $(s_{j'}, s)$,
we have
 $\forall \forall \forall \exists \forall \delta(n, s) > \alpha - |s - s_{j'}|(1 + \frac{\beta'}{\varepsilon})|$.
Let $n'' = Max\{n_{S_{j'}\beta',\varepsilon'}|j\in(1...k)\}$ and as $|s - s_{j}| < \varepsilon$, we have
 $\forall \forall \forall \exists \forall \delta(n, s) > \alpha - \varepsilon(1 + \frac{\beta'}{\varepsilon})|$.
 $\beta' > \beta^* \varepsilon' \in]0, dist(\varepsilon^*, \varkappa_{\varepsilon})[n'' n \ge n''$
Choosing $\varepsilon = \varepsilon' < \frac{\varepsilon_{\chi}}{2}$ we have $\frac{dist(\varkappa, \varepsilon^*)}{2} < dist(\varepsilon^*, \varkappa_{\varepsilon})|$ and
 $\forall \forall \forall \forall \delta(n, s) > \alpha - \varepsilon - \beta'$
 $\beta' > \beta^* \varepsilon \in]0, \frac{\xi_{\chi}}{2}[n''' n \ge n'']$

where s is any arbitrary point of \mathbf{X} and n" does not depend on s . Hence

$$\forall \quad \forall \quad \exists \quad \forall \quad \forall \quad \delta(n,s) > \alpha - \varepsilon - \beta' .$$

$$\beta' > \beta^{*} \quad \varepsilon \in]0, \frac{\varepsilon_{\mathcal{K}}}{2} [\begin{array}{c} n^{"} & n \ge n^{"} & s \in \mathcal{K} \end{array}$$

As $\ \beta'$ is arbitrary and strictly greater than $\ \beta^{*}$, we have

$$\forall \quad \forall \quad \exists \quad \forall \quad \forall \quad \delta(n,s) > \alpha - \beta'$$
$$\mathcal{H}_{\mu\alpha} \quad \beta' > \beta^* \quad n' \quad n \ge n' \quad s \in \mathcal{K}$$

and hence

$$\begin{array}{cccc} \forall & \forall & \exists & \forall & & |P_n(s) \exp{-\lambda_n s}| < \exp{(-|\lambda_n|(\alpha - \beta'))} \\ & & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & & \\ &$$

THEOREM 1. - When $\beta^* < \infty$, $L < \infty$, the LC-dirichletian element {f} converges absolutely on $\mathscr{B}_{*,L+\beta^*}$ and uniformly on any compact subset of $\mathscr{B}_{*,L+\beta^*}$.

PROOF. Let us suppose that $\mathcal{B}_{*,L+\beta^*}$ is non empty. Let \mathfrak{K}_{o} be a compact subset of $\mathcal{B}_{*,L+\beta^*}$. We know that $\exists \mathfrak{K}_{o} \subset \mathfrak{B}_{*\alpha}$. Let $\alpha > L+\beta^*$

 $\beta' \in]\beta^*, \alpha-L[$. From Lemma 2 we have,

$$\exists \forall \forall |P_n(s) \exp(-\lambda_n s)| < \exp\{-|\lambda_n|(\alpha - \beta')\}$$

n' n>n' s \(\kappa\).

where $\alpha - \beta' > L$. Hence

$$\sum_{n=n'}^{\infty} |P_n(s) \exp(-\lambda_n s)| < \sum_{n=n'}^{\infty} \exp\{-|\lambda_n|(\alpha-\beta')\}$$

and the series on the right hand side is convergent which proves that $\{f\}$ converges absolutely and uniformly on \mathcal{K}_{O} . Since \mathcal{K}_{O} is any arbitrary compact subset of $\mathcal{B}_{*,L+\beta^{*}}$, $\{f\}$ converges uniformly on any compact subset of $\mathcal{B}_{*,L+\beta^{*}}$ and absolutely on $\mathcal{B}_{*,L+\beta^{*}}$.

REMARK 1. By the following method, we obtain a bigger set of absolute convergence for {f}. Let \mathcal{P}_{*L} be supposed to be non-empty and $L < \infty$. Then $\forall \exists \delta_*(s) > L + \varepsilon_s$; $\exists \forall \delta(n,s) > L + \varepsilon_s$ and $s \in \mathcal{P}_{*L} \varepsilon_s > 0$ $n'_s n \ge n'_s$ $\forall -Log | P_n(s) \exp(-\lambda_n s) | > (L + \varepsilon_s) |\lambda_n|$. Hence $n \ge n'_s$ $\sum_{n=n'_s}^{\infty} | P_n(s) \exp(-\lambda_n s) | < \sum_{n=n'_s}^{\infty} \exp\{-(L + \varepsilon_s) |\lambda_n|\}$ and as the series on the right hand side converges, the series (1.1) converges absolutely on \mathcal{P}_{*L} . In this result, we have no restriction on β^* . REMARK 2. {f} diverges on $\mathbb{C} - \mathcal{E}^* - \overline{\mathcal{P}}_{*0}$. If $s \in \mathbb{C} - \mathcal{E}^* - \overline{\mathcal{P}}_{*0}$, then $\delta_*(s) < 0$ and $\exists \delta_*(s) < -\alpha$. Hence $\forall \exists \exists \delta(n_j, s) < -\alpha$ $\alpha \in \mathbb{R}^+_0$ $s \in \mathbb{C} - \mathcal{E}^* - \overline{\mathcal{P}}_{*0}$ $\alpha > 0$ (n_j) where (n_i) is an infinite subsequence of $\mathbb{N} - \{0\}$. Therefore

$$|P_{n_j}(s)\exp(-\lambda_{n_j}s)| > \exp(\alpha|\lambda_{n_j}|) > 1$$

and which shows that $\{f\}$ diverges on $\mathbb{C}-\mathcal{E}^*-\overline{\mathcal{F}}_{*0}$. When L = 0, we have convergence of the series (1.1) in $\mathcal{F}_{*0} \subset \mathbb{C}-\mathcal{E}^*$ and divergence in $\mathbb{C}-\mathcal{E}^*-\overline{\mathcal{F}}_{*0}$. We do not discuss the property of convergence of the series in \mathcal{E}^* .

From here onwards we consider a L-dirichletian element,

$$\{f\}: \sum_{1}^{\infty} P_{n}(s) \exp(-\lambda_{n} s)$$
(2.2)

where (λ_n) is a D-sequence (here λ_n are positive real numbers).

DEFINITION. It is said that a D-sequence (λ_n) is of the type (A) if the following conditions are satisfied :

- i) the Dirichlet series $\sum_{j=1}^{\infty} \exp(-\lambda_s)$ converges on $P_o = \{s \in \mathbb{C} \mid \sigma > 0\}$. (this gives that $\forall \sum_{n \in \mathbb{N} - \{0\}}^{\infty} \exp(-s(\lambda_j - \lambda_n))$ converges on P_o . Let $n \in \mathbb{N} - \{0\}$ j=n $\theta_n(s)$ be its sum at the point s);
- $\begin{array}{ll} \text{ii)} & \forall \eta > 0 & \text{the sequence of functions} & (\theta_n) & \text{where } \theta_n : P_0 \ni s & \rightarrow \theta_n(s) \\ & \text{is bounded on } \overline{P}_{\eta} = \{s \in \mathbb{C} \, / \, \sigma \geq \eta\}; \end{array}$
- iii) $\forall \eta > 0$ the sequence of functions $\begin{pmatrix} \theta^* \\ n \end{pmatrix}$ where $\theta^*_n : \stackrel{P}{}_{O} \ni s \rightarrow \sum_{j=1}^n \exp(-s(\lambda_n - \lambda_j))$ is bounded on \overline{P} .

EXAMPLE. - If (λ_n) is a D-sequence and $\exists \ln f(\lambda_{n+1} - \lambda_n) = \mu$, then it is easy to see that (λ_n) is of the type (Λ) .

If the D-sequence $(\lambda \atop n)$ is of the type (Λ) , then we can easily show that L = 0 .

Now let us prove Jentzsch's theorem for L-dirichletian element. This theorem for Dirichlet series with complex exponents was proved by T.M. Gallie [3]. First let us consider the associated Dirichlet series of {f}.

$$\{f_A\}$$
 : $\sum_{1}^{\infty} A_n \exp(-\lambda_n s)$

where A_n is defined by (1.4). Let

$$\int_{p}^{1} = \inf \left\{ \sigma \in \mathbb{R} / \lim |A_n \exp(-\lambda_n s)| = 0 , n \to \infty \right\}$$

be the abscisse of pseudo convergence of $\,\,\{f_{\underline{A}}^{}\}$. Then we know that

$$\sigma_{p}^{t} = \limsup_{n \to \infty} \left\{ \frac{\log A_{n}}{\lambda_{n}} \right\} ;$$

when L = 0 , $\sigma_p^{f_A}$ is the same as $\sigma_c^{f_A}$, the abscisse of convergence of $\{f_A\}$.

Let n and n' be two natural numbers such that $n'\ge n$. Let $E_{n,n'}$ denote the set, indexed by (n,n'), of points of $\mathbb C$ which are zeros of the LC-dirichletian polynomial

$$S_{n,n'}(S) = \sum_{j=n}^{n'} P_j(s) \exp(-s\lambda_j) ;$$

let E denote the union of all sets $E_{n,n'}$ corresponding to all pairs (n,n')and E_{∞} be the set formed by the points which are zeros for an infinity of polynomials $S_{n,n'}(s)$. Let us put $E^* = E^d \cup E_{\infty}$ where E^d is the derived set of E. E* is a closed subset of C. It is evident that $E \supset \mathcal{E}$ and $E_{\infty} \supset \mathcal{E}_{\infty}$ and hence $E^* \supset \mathcal{E}^*$. We suppose in what follows that $C - E^* \neq \phi$ (which implies $C - \mathcal{E}^* \neq \phi$). Then we have

THEOREM 2. - When the D-sequence $(\lambda \ n)$ is of the type (Λ) , $\sigma_{C}^{f_{A}} < \infty$ and $\beta^{*} < \infty$, then we have $(Fr(\mathfrak{g}_{*}) \cap \mathbb{C}-\mathcal{E}^{*}) \subset E^{*}$.

PROOF. Let us suppose that the theorem is not true. Then there exists a point $b \in (Fr(\mathcal{B}_{*0}) \cap \mathbb{C} - \mathcal{E}^*)$ and a disc $d(b,\rho)$ centred at b of radius $\rho > 0$, included in $\mathbb{C} - \mathcal{E}^*$ such that

$$\begin{array}{l} \exists \quad \forall \quad \forall \quad S_{n,n'}(s) \neq 0 \ . \\ \text{We have } |P_n(s) \exp(-\lambda_n s)| \leq A_n(1+|s|)^{m_n} |\exp(-\lambda_n s)| \quad \text{and} \\ \forall \quad \exists \quad \forall \quad (m_n/\lambda_n) < \beta' \ . \ \text{Let us take a certain } \beta' > \beta^* \ \text{and put} \\ \beta' > \beta^* n_0'(=n_{\beta'}) \quad n \ge n_0' \\ \omega = \beta' \log[1+\sup\{|s|/s\in d(b,\rho)\}] - \ln\{\sigma/s\in d(b,\rho)\} \quad \text{and hence} \\ \forall \quad \forall \quad |P_n(s)\exp(-\lambda_n s)| < A_n \exp(\omega\lambda_n) \ . \ \text{From the definition of } \sigma_c^{f_A} \ we \\ n \ge n_0' \quad s\in d(b,\rho) \\ \text{have } \quad \forall \quad \exists \quad \forall \quad A_n < \exp(\sigma'\lambda_n) \ . \ \text{Hence putting } n_1 = \operatorname{Max}(n_0,n_0',n_0'), \\ \sigma' > \sigma_c' \quad \sigma_0' = n_0', \quad n \ge n_0'' \\ we \ \text{get } \quad \forall \quad \forall \quad |P_n(s)\exp(-\lambda_n s)| < \exp((\omega+\sigma')\lambda_n) \ . \\ n \ge n_1 \ s\in d(b,\rho) \\ \text{Let } S_{n_1,n}(s) = \sum_{j=n_1}^n P_j(s)\exp(-\lambda_j s) \ \text{and } \forall \quad T_{n_1,n}(s) = (S_{n_1,n}(s))^{1/\lambda_n}; \\ [S_{n_1,n}(s)]^{1/\lambda_n} \ \text{ is defined to be equal to } \exp((1/\lambda_n)\log S_{n_1,n}(s)) \ \text{ where } \end{array}$$

Im Log $S_{n_1,n}(s) \in]-\pi,\pi]$. For each integer $n \ge n_1$ the function $T_{n_1,n}: d(b,\rho) \ni s \rightarrow T_{n_1,n}(s)$ is holomorphic on $d(b,\rho)$. We have $\forall n_1,n \in [T_{n_1,n}(s)] = |(\sum_{j=n_1}^n P_j(s) \exp(-\lambda_j s))^{1/\lambda_n}| \le \{\exp(\lambda_n(\omega+\sigma') + \log n)\}^{1/\lambda_n}$ $= \exp(\omega+\sigma') \exp(\frac{\log n}{\lambda_n})$.

Since (λ_n) is of the type (Λ) which implies L = 0, we have $\limsup_{n \to \infty} (\frac{\log n}{\lambda_n}) = 1$. Hence the sequence of functions $(T_{n_1,n})$, $n \ge n_1$, is bounded and hence normal on $d(b,\rho)$.

Let \aleph be a compact subset of $d(b,\rho)$ such that $\operatorname{Int} \aleph \cap \mathcal{B}_{\ast O} \neq \varphi$. From any extracted subsequence of $(\operatorname{T}_{n_1,n})$ we can extract a subsequence which converges uniformly on \aleph and the limit function is holomorphic on the Int \aleph .

Let κ_1 be a compact subset of $d(b,\rho) \cap \mathcal{B}_{*^{O}}$ such that $\operatorname{Int} \kappa \cap \operatorname{Int} \kappa_1 \neq \varphi$. Then we have $\forall \lim_{s \in \kappa_1} T_{n \to \infty} = 1$. Now $\kappa \cup \kappa_1$ is a compact subset of $d(b,\rho)$. Then the subsequence extracted from the arbitrarily extracted subsequence of $(T_{n_1,n})$ converges uniformly on $\kappa \cup \kappa_1$ to a limit function holomorphic in $\operatorname{Int}(\kappa \cup \kappa_1)$ and continuous on the boundary of $\kappa \cup \kappa_1$ and takes the value one at each point of κ_1 . Hence the limit function takes the value one at each point of $\kappa \cup \kappa_1$.

As \mathfrak{K} is any arbitrary compact subset of $d(\mathfrak{b},\rho)$ and \mathfrak{K}_1 is any arbitrary compact subset of $d(\mathfrak{b},\rho) \cap \mathfrak{B}_{\ast 0}$ such that Int $\mathfrak{K} \cap \operatorname{Int} \mathfrak{K}_1 \neq \phi$, we have

$$\forall \qquad \lim_{s \in d(b,\rho)} T_{n \to \infty} T_{n_1,n}(s) = 1 .$$

Let $s_{\rho} \in d(b,\rho) \cap (\mathbb{C} - e^* - \overline{\mathcal{B}}_{*\rho})$. Then

$$\begin{array}{ccc} \forall & \exists & \forall & \left| \sum_{j=n_{1}}^{n} P_{j}(s) \exp(-\lambda_{j} s) \right| < (1+\varepsilon)^{\lambda_{n}} \\ \varepsilon > 0 & n_{1}'(=n_{s_{0}}, \varepsilon) \ge n_{1} & n \ge n_{1}' & j = n_{1}' \end{array}$$

and hence

$$\forall |P_{n}(s_{0}) \exp(-\lambda_{n} s_{0})| = |S_{n_{1},n}(s_{0}) - S_{n_{1},n-1}(s_{0})| < 2(1+\varepsilon)^{\lambda_{n}}$$

which gives

$$-\frac{\log |P_n(s_0) \exp(-\lambda_n s_0)|}{\lambda_n} > \frac{-\log 2}{\lambda_n} - \log(1+\varepsilon) ;$$

 $\delta_*(s_0) \ge 0$ as ε is arbitrary. Hence we arrive at a contradiction that $s_0 \in \overline{\mathcal{B}}_{*0} \cap \mathbb{C} - \mathcal{C}^*$ which establishes the result.

Finally, let us prove a theorem on the overconvergence of $\{f\}$ defined by (7). Before proving the theorem let us note that

REMARK 3. Let $\overline{\Delta}$ be any compact subset of $\mathbb{C}-\mathcal{E}^*$ and (λ_n) be a D-sequence of the type (Λ) . We have $|P_n(s)\exp(-\lambda_n s)| \leq A_n(1+|s|)^{m_n}\exp(-\sigma\lambda_n)$. If $s\in\overline{\Delta}$, then $|P_n(s)\exp(-\lambda_n s)| \leq A_n(1+m_{\Delta})^{m_n}\exp(m_{\Delta}\lambda_n)$ where $m_{\Delta} = \sup\{|s|/s\in\overline{\Delta}\}$. As $\overline{\Delta}$ is a compact set, m_{Δ} is finite; for sufficiently large n we have

$$\frac{\operatorname{Log}|P_{n}(s)\exp(-\lambda_{n}s)}{\lambda_{n}} \leq \frac{\operatorname{Log}A_{n}}{\lambda_{n}} + \frac{m_{n}}{\lambda_{n}}\operatorname{Log}(1+m_{\Delta})+m_{\Delta};$$

$$\delta_{*}(s) \geq -\sigma_{c}^{f_{A}} - \beta^{*}\operatorname{Log}(1+m_{\Delta}) - m_{\Delta}.$$

Hence $\forall \quad \overline{\Delta} \subset \mathscr{D}_{*}, \alpha_{o} - \varepsilon \quad \text{with} \quad \alpha_{o} = -\sigma_{c}^{f_{A}} - \beta^{*}\operatorname{Log}(1+m_{\Delta}) - m_{\Delta}.$ If

$$\beta^{\bigstar} < \frac{-\sigma_{c}^{f_{A}} - m_{\Delta}}{1 + \log(1 + m_{\Delta})} \text{, we have } \overline{\Delta} \subset \mathcal{B}_{\bigstar\beta^{\bigstar}} \text{.}$$

THEOREM 3. - When (λ_n) is a D-sequence of the type (Λ) , $\beta^* < \infty$ and $\mathcal{D}_{*\beta}^* \neq \phi$ if there exist an infinite subsequence $(n_{\mathcal{V}})$, $\mathcal{V} \in \mathbb{N}$, of $\mathbb{N} - \{0\}$ and a sequence of strictly positive numbers $(\theta_{\mathcal{V}})$ such that

and

$$\begin{array}{c} \lim_{v \to \infty} \theta_{v} = +\infty \\ \text{and} \\ \forall \lambda_{n} + 1 > (1 + \theta_{v}) \lambda_{n} \\ v \in \mathbb{N} \end{array} (2.3)$$

then the sequence $\{S_{n_{v}}(s)\}$, $v \in \mathbb{N}$, where $S_{n_{v}}(s) = \sum_{j=1}^{n_{v}} P_{j}(s) \exp(-\lambda_{j}s)$, converges at each point s of any open simply connected subset (whose intersection with $\mathcal{D}_{*,\beta}^{*}$ in non empty) of an open set included in $\mathbb{C}-\mathcal{C}^{*}$ in which the function f defined by $\{f\}$ is holomorphic.

PROOF. Let us choose 3 bounded domains Δ_1, Δ_2 and Δ_3 in the following manner: $\overline{\Delta}_1 \subset \Delta_2$, $\overline{\Delta}_2 \subset \Delta_3$, $\overline{\Delta}_3 \subset \mathbb{C}-\mathcal{E}^*$, $\overline{\Delta}_1 \subset \mathcal{B}_{*\beta^*}$ and $\overline{\Delta}_3$ is included in an open subset of $\mathbb{C}-\mathcal{E}^*$ in which the function f defined by {f} is holomorphic. Further let $\operatorname{Fr}(\Delta_1)$, $\operatorname{Fr}(\Delta_2)$ and $\operatorname{Fr}(\Delta_3)$ satisfy a condition of Hadamard's type, namely

$$\begin{array}{cccc} \forall & \exists & \forall & \forall & |P_n(s)\exp(-\lambda_n s)| < \exp(-\lambda_n(\alpha_{\Delta_1} - \beta')); \\ \beta' \in]\beta^*, \alpha_{\Delta_1}[& n_1 & n \ge n_1 & s \in Fr(\Delta_1) \end{array}$$

hence for $n \ge n_1$

$$\begin{split} \sum_{j=n+1}^{\infty} |P_j(s) \exp(-\lambda_j s)| &< \sum_{j=n+1}^{\infty} \exp\{-\lambda_j (\alpha_{\Delta_1} - \beta^*)\} \\ &= \exp\{-\lambda_{n+1} (\alpha_{\Delta_1} - \beta^*)\} \sum_{j=n+1}^{\infty} \exp\{-(\alpha_{\Delta_1} - \beta^*)(\lambda_j - \lambda_{n+1})\} \end{split}$$

Since (λ_n) is a D-sequence of the type (Λ) and $\alpha_{\Delta_1} - \beta' > 0$, there exists a finite number strictly positive $B(\beta')$ such that

 $\begin{array}{c|c} \forall & \sum \limits_{n \in \mathbb{N}} & |\exp\{-(\lambda_j - \lambda_{n+1})s| \leq B(\beta') & \text{where } \Re es \geq \alpha_{\Delta_1} - \beta'; \\ \text{thus we have for each } n \geq n_1 \end{array}$

$$\sum_{j=n+1}^{\infty} |P_j(s) \exp(-\lambda_j s)| < B(\beta') \exp\{-\lambda_{n+1}(\alpha_{\Delta_1} - \beta')\}.$$
(2.4)

Now let $I_2 = \{ \alpha \in \mathbb{R} \mid \mathcal{B}_{\ast \alpha} \supset \overline{\Delta}_3 \}$. We have

$$\begin{array}{ccc} \forall & \exists & \forall & \delta(n,s) \geq \frac{-\log A_n}{\lambda_n} - \frac{m_n}{\lambda_n} \log \left(1 + |s|\right) + \sigma \\ s \in \overline{\Delta}_3 & n'(=n_s) & n \geq n' \end{array}$$

Let $m_{\Delta_3} = \sup\{|s| / s \in \overline{\Delta}_3\}$. Then

$$\forall \delta(\mathbf{n}, \mathbf{s}) \geq \frac{-\log A_{\mathbf{n}}}{\lambda_{\mathbf{n}}} - \frac{m_{\mathbf{n}}}{\lambda_{\mathbf{n}}} \log (1 + m_{\Delta_3}) - m_{\Delta_3}$$

$$\delta_{*}(\mathbf{s}) \geq -\sigma_{\mathbf{c}}^{\mathbf{f}_{\mathbf{A}}} - \beta^{*} \log (1 + m_{\Delta_3}) - m_{\Delta_3} ,$$

which shows that $\overline{\Delta}_3 \subset \mathcal{B}_{*\alpha}$ with $\alpha < -\sigma_c^{f_A} - \beta^* \operatorname{Log}(1+m_{\Delta_3}) - m_{\Delta_3}$, and hence $I_2 \neq \phi$ and is an interval in \mathbb{R} . Let $\alpha_{\Delta_3} = \sup I_2$. Then $\forall \mathcal{B}_{*}, \alpha_{\Delta_3} - e^{-\overline{\Delta}_3}$. We can easily show that $\alpha_{\Delta_3} = \inf\{\delta_*(s) \mid s \in \overline{\Delta}_3\}$ which implies that α_{Δ_3} is a finite number. Once again, from lemma 2, we get

$$\begin{array}{cccc} \forall & \exists & \forall & \forall & |P_n(s) \exp(-\lambda_n s)| < \exp\{-\lambda_n(\alpha_{\Delta_3} - \beta')\} \\ \beta' > \beta^* & n_2 & n \ge n_2 & s \in Fr(\Delta_3) \end{array}$$

which gives

$$\begin{array}{ccc} & n(\geq n_2) & n_2 - 1 \\ & & \sum \limits_{\substack{s \in \operatorname{Fr}(\Delta_3)}} & |P_j(s) \exp(-\lambda_j s)| &= \sum \limits_{\substack{j=1}}^{n_2 - 1} |P_j(s) \exp(-\lambda_j s)| + \sum \limits_{\substack{j=n_2}}^{n_2} |P_j(s) \exp(-\lambda_j s)| \\ & \leq \max \left\{ \begin{array}{c} n_2 - 1 \\ \sum \limits_{\substack{j=1}}^{n_2 - 1} |P_j(s) \exp(-\lambda_j s)| / s \in \operatorname{Fr}(\Delta_3) \right\} + \sum \limits_{\substack{j=n_2}}^{n_2} \exp(-\lambda_j (\alpha_{\Delta_3} - \beta')) \end{array} \right.$$

Let us choose $\beta' > \beta^*$ such that $\alpha_{\Delta_3} - \beta' \neq 0$. Now we examine the two cases.

$$\begin{array}{lll} \underline{Case \ 1} & - & \mbox{If } \alpha_{\Delta_3}^{} - \beta' > 0 \ , \ \mbox{then} \\ & & \sum\limits_{j=n_2}^n \exp(-\lambda_j (\alpha_{\Delta_3}^{} - \beta')) = \exp(\alpha_{\Delta_3}^{} - \beta') \sum\limits_{j=n_2}^n \exp\{-(\alpha_{\Delta_3}^{} - \beta')(\lambda_j + \lambda_j)\} < B^*(\beta') \exp(\alpha_{\Delta_3}^{} - \beta')) \\ & \mbox{where } B^*(\beta') \ \ \mbox{is the sum of the series} \quad \sum\limits_{j=0}^\infty \exp(-2(\alpha_{\Delta_3}^{} - \beta')\lambda_j) \ . \end{array}$$

$$\underbrace{ \text{Case 2.}}_{j=n_2} \text{If } \alpha_{\Delta_3}^{-\beta'} < 0 \text{, then}$$

$$\underbrace{ \sum_{j=n_2}^{n} \exp(-\lambda_j (\alpha_{\Delta_3}^{-\beta'})) = \sum_{j=n_2}^{n} \exp(\lambda_j |\alpha_{\Delta_3}^{-\beta'}|) = \exp(\lambda_n |\alpha_{\Delta_3}^{-\beta'}|) \underbrace{ \sum_{j=n_2}^{n} \exp(-(\lambda_n^{-}\lambda_j) |\alpha_{\Delta_3}^{-\beta'}|) }_{j=n_2}$$

Since the D-sequence (λ_n) is of the type (A) there exists a finite number strictly positive $B'(\beta')$ such that

$$\begin{array}{cc} & & & n \\ \forall & & \sum \\ n \in \mathbb{N} - \{0\} \\ j = 1 \end{array} exp\{-(\lambda_n - \lambda_j) | \alpha_{\Delta_3} - \beta' | \} \leq B'(\beta') \end{array}$$

which implies that

$$\sum_{j=n_2}^{n} \exp(-\lambda_j (\alpha_{\Delta_3} - \beta')) \le B'(\beta') \exp(\lambda_n |\alpha_{\Delta_3} - \beta'|) .$$

On putting $B''(\beta') = Max\{B'(\beta'), B''(\beta')\}$ we have

$$\sum_{j=n_{2}}^{n} \exp(-\lambda_{j}(\alpha_{\Delta_{3}}-\beta')) \leq B'''(\beta')\exp(\lambda_{n}|\alpha_{\Delta_{3}}-\beta'|) .$$
(2.5)

Using the generalized form of Hadamard three circle theorem $\left[4\right]$ we have

$$\exists \log M_{2,\nu} \le b \log M_{1,\nu} + (1-b) \log M_{3,\nu}$$
(2.6)
b∈]0,1[

where

$$M_{i,v} = Max\{ |R_{n_v}(s)| / s \in Fr(\Delta_i) \}, i = 1, 2, 3$$

with

$$R_{n_{v}}(s) = f(s) - \sum_{j=1}^{n_{v}} P_{j}(s) \exp(-\lambda_{j}s) .$$

From (2.4) we have for $n_{v} \ge n_{1}$

$$M_{1,\nu} \leq B(\beta') \exp\{-(\lambda_{n_{\nu}}+1)(\alpha_{\Delta_{1}}-\beta')\} < B(\beta') \exp\{-(1+\theta_{\nu})\lambda_{n_{\nu}}(\alpha_{\Delta_{1}}-\beta')\}$$
 (2.7)
cause of (2.3) On putting

because of (2.3) . On putting

$$B_{o} = Max \{ |f(s)|/s \in Fr(\Delta_{3}) \} + Max \begin{cases} n_{2}^{-1} \\ \sum \\ j=1 \end{cases} |P_{j}(s) \exp(-\lambda_{j}s)|/s \in Fr(\Delta_{3}) \}$$

we have from (2.5) for $n_{v} \ge n_{2}$,

$$\begin{split} & M_{3,\nu} \leq B_0 + B^{\tiny \mbox{\tiny III}}(\beta^{\,\prime}) \exp(\lambda_n \left| \alpha_{\Delta_3}^{} - \beta^{\,\prime} \right|) \ . \\ & \text{Let} \quad B_0^{\prime}(\beta^{\,\prime}) = Max(B_0^{}, B^{\tiny \mbox{\tiny IIII}}(\beta^{\,\prime}) \ . \ \text{Then for} \ n_\nu \geq n_2^{} \ , \end{split}$$

$$M_{3,\nu} \leq B'_{o}(\beta') \exp(\lambda_{n} |\alpha_{\Delta_{3}}^{-}\beta'|) . \qquad (2.8)$$

Then using (2.7) and (2.8) in (2.6) we get, for $n_1 \ge max\{n_1,n_2\}$

$$\begin{split} & \text{Log } M_{2,\nu} \leq b \log B(\beta') + (1-b) \text{Log } B'_{0}(\beta') + \left\{ -b(1+\theta_{\nu})(\alpha_{\Delta_{1}} - \beta') + (1-b) \left| \alpha_{\Delta_{3}} - \beta' \right| \right\} \lambda_{n_{\nu}} \\ & \text{Since } \lim_{\nu \to \infty} \theta_{\nu} = \infty \text{, we have } \lim_{\nu \to \infty} -b(1+\theta_{\nu})(\alpha_{\Delta_{1}} - \beta') + (1-b) \left| \alpha_{\Delta_{3}} - \beta' \right| = -\infty \text{, } \nu \uparrow \infty \\ & \text{and hence } \lim_{\nu \to \infty} \text{Log } M_{2,\nu} = -\infty \text{ which proves the theorem.} \end{split}$$

When the polynomial $P_n(s)$ reduces to a complex number $a_{n,o}$, we get the famous Ostrowaski's theorem [1] for Dirichlet series. Our theorem contains G.L. Lunt'z theorem [5] as a particular case when $P_n(s) = a_n s^{m_n}$.

COROLLARY. - In theorem 3 if we replace (2.3) by the condition that there exists a sequence (θ_n) of strictly positive numbers such that $\lim_{n \to \infty} \theta_n = \infty$ and $\exists \forall \lambda_{n+1} > (1+\theta_n)\lambda_n$, then each point of $(\operatorname{Fr} \mathcal{B}_{*0}) \cap \mathbb{C} - \mathcal{E}^*$ is a singular point for f defined by (2.2). In particular if $(\operatorname{Fr} \mathcal{B}_{*0}) \subset \mathbb{C} - \mathcal{E}^*$ then $\operatorname{Fr} \mathcal{B}_{*0}$ is a natural boundary for f.

PROOF. Let us suppose that the corollary is false. Then there exists a point $b \in (\operatorname{Fr} \mathcal{B}_{*0}) \cap \mathbb{C}-\mathcal{E}^*$ and a disc $d(b,\rho)$ centred at b and of radius $\rho > 0$ on which f is holomorphic. As a result of theorem 3 the sequence (S_n) converges on $d(b,\rho)$. From remark 2 {f} diverges on $\mathbb{C}-\mathcal{E}^*-\overline{\mathcal{B}}_{*0}$. There exists necessarily points common to $\mathbb{C}-\mathcal{E}^*-\overline{\mathcal{B}}_{*0}$ and $d(b,\rho)$. For these points there is a contradiction which establishes the corollary.

<u>ACKNOWLEDGENT</u>. - The second author would like to thank French Government for financial support.

REFERENCES

- 1. BERNSTEIN V. <u>Leçons sur les progrès récents de la théorie des séries</u> <u>de Dirichlet</u>, Gauthier-Villars, Paris, 1933.
- BLAMBERT M. and SIMEON J. <u>Sur une technique d'étude des propriétés</u> de convergence des séries de Dirichlet à exposants complexes, An. Fac. Ci. Univ. Porto, 56 (1973), 1-33.

- GALLIE T.M. Mandelbrojt's inequality and Dirichlet series with complex exponents, <u>Trans. Amer. Mat. Soc.</u> 90 (1959), 57-72.
- GOLUSIN G.M. Geometric theory of functions of a complex variable, Providence, American Mathematical Soc. 1969, Translations of Mathematical monographs 26.
- LUNTZ G.L. On the over convergence of certain series, <u>Izv</u>. <u>Ann</u>. <u>Armjan</u>, <u>S.S.R. Ser Fiz</u>. <u>Mat. Nauk</u>. 15 (5), (1962), 11-26.

Laboratoire de Mathématiques Pures - Institut Fourier dépendant de l'Université Scientifique et Médicale de Grenoble associé au C.N.R.S. B.P. 116 38402 ST MARTIN D'HERES (France)