Internat. J. Math. & Math. Sci. Vol 2. (1979) 29-34

SOME RESULTS ON COMPOSITION OPERATORS ON \mathcal{L}^2

R.K. SINGH D.K. GUPTA B.S. KOMAL

Mathematics Department University of Jammu Jammu 180001, India

(Received August 12, 1978)

<u>ABSTRACT</u>. A necessary and sufficient condition for a bounded operator to be a composition operator is investigated in this paper. Normal, quasi-hyponormal, paranormal composition operators are characterised.

<u>KEY WORDS AND PHRASES</u>. Invertible, normal, quasi-normal, hyponormal, quasi-hyponormal, paranormal composition operators.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 47899, Secondary 47899. 1. PRELIMINARIES.

Let N be the set of all non-zero positive integers and ℓ^2 be the Hilbert space of all square-summable sequences. Let ϕ be a mapping from N into itself. Then we define a composition transformation $C_{\phi}^{}$ from ℓ^2 into the space of all complex valued sequences by

$$C_{\phi} f = f_{0\phi} \phi$$
 for every $f_{\varepsilon} \ell^2$

In the case C_{ϕ} is bounded and the range of C_{ϕ} is in ℓ^2 , we call it a composition operator. The symbol $B(\ell^2)$ denotes the Banach algebra of all bounded

linear operators on ℓ^2 .

In the first section of this paper, a criterion for a bounded operator to be a composition operator is given. In latter sections, Normal, Quasi-hyponormal, Paranormal composition operators are characterized.

2. CRITERION FOR A BOUNDED OPERATOR TO BE A COMPOSITION OPERATOR.

In this section we obtain a necessary and sufficient condition for a bounded operator A to be a composition operator.

THEOREM 2.1. Let $A \in B(\ell^2)$. Then A is a composition operator if and only if for every $n \in N$, there is an $m \in N$ such that $A^*e^{(n)} = e^{(m)}$, where $e^{(n)}$ is the sequence defined by $e^{(n)}(p) = \delta_{np}$ (the Kronecker delta).

PROOF. Let A be a composition operator on ℓ^2 . Then $A = C_{\phi}$ for some ϕ . Let $n \in N$. Then $A^*e^{(n)} = C_{\phi}^*e^{(n)} = {e \choose (n)}$ by definition of $C_{\phi}^*[6]$. Conversely suppose $A^*e^{(n)} = e^{(m)}$. Then define $\phi(n) = m \cdot \phi$ is well defined, since m is unique. Thus $A^*e^{(n)} = {e \choose (n)} = C_{\phi}^*e^{(n)}$ for every $n \in N$. This shows that $A^* = C_{\phi}^*$ and hence $A = C_{\phi}$.

3. NORMAL COMPOSITION OPERATORS.

An operator $A \in B(H)$ is normal if A commutes with its adjoint. It is not true in general that every invertible operator is normal. It is true in case of composition operators and is shown in the following theorem.

THEOREM 3.1. Let $C_{\phi} \in B(\ell^2)$. Then C_{ϕ} is invertible if and only if C_{ϕ} is normal.

PROOF. Suppose that C_{ϕ} is invertible. Then by Theorem 2.3 of [6] C_{ϕ} is unitary and therefore, it is normal.

Conversely, if C_{ϕ} is not invertible, then by theorem 2.2 of [6], ϕ is not invertible, and so either ϕ is not one-to-one or ϕ is not onto.

If ϕ is not one-to-one, then $||C_{\phi}^{\star}e^{(n)}|| = 1$ and $||C_{\phi}e^{(n)}|| \ge \sqrt{2}$ for some $n \in N$. And if ϕ is not onto, then $||C_{\phi}^{\star}e^{(n)}|| = 1$ and $||C_{\phi}e^{(n)}|| = 0$ for $n \in N \setminus \phi(N)$, where $\phi(N)$ is the range of ϕ . Thus in both the cases, C_{ϕ} is not normal. This proves the sufficient part.

COROLLARY. Let $n \in N$. Then $C^{\mathbf{n}}_\varphi$ is normal if and only if C_φ is normal.

4. QUASI-HYPONORMAL COMPOSITION OPERATORS.

Let $C_{\phi} \in B(\ell^2)$. Then the measure $\lambda \phi^{-1}$ is absolutely continuous with respect to the measure λ [4]. It is clear that the measure $\lambda(\phi o \phi)^{-1}$ is absolutely continuous with respect to the measure $\lambda \phi^{-1}$.

Let $\frac{d\lambda\phi^{-1}}{d\lambda} = f_0$ (the Radon-Nikodym derivative of the measure $\lambda\phi^{-1}$ with respect to the measure λ .),

$$\frac{d\lambda (\phi o \phi)^{-1}}{d\lambda \phi^{-1}} = g_o, \text{ and } \frac{d\lambda (\phi o \phi)^{-1}}{d\lambda} = h_o$$

Then by Theorem A [1, p. 133], $h_0 = g_0 \cdot f_0$

An operator $A \in B(\ell^2)$ is quasi-hyponormal if $||A^*A x|| \le ||AA x||$ for all $x \in \ell^2$. A is called paranormal if $||A x||^2 \le ||A^2x||$ for all unit vectors x in ℓ^2 . It is shown in this section that the class of quasihyponormal composition operators coincides with the class of paranormal composition operators.

THEOREM 4.1. Let $C_{\phi} \in B(\ell^2)$. Then C_{ϕ} is quasi-hyponormal if and only if $f_0 \leq g_0$.

PROOF. Suppose C_{ϕ} is quasi-hyponormal. Then $||C_{\phi}^{*}C_{\phi}X_{E}|| \leq ||C_{\phi}C_{\phi}X_{E}||^{2}$, where X_{E} is the characteristic function of the set E.

or
$$||M_{f_o}X_E||^2 \leq ||X_E \circ \phi \circ \phi||^2$$
 by proof of Th. 3 [3],

R. K. SINGH, D. K. GUPTA & B. S. KOMAL

or
$$\int_{\mathbf{N}} \mathbf{f}_{\mathbf{o}}^{2} \mathbf{X}_{\mathbf{E}} d\lambda \leq \int_{\mathbf{N}} |\mathbf{X}_{\mathbf{E}} \phi \phi \phi|^{2} d\lambda = \int_{\mathbf{N}} \mathbf{X}_{\mathbf{E}} d\lambda (\phi \phi \phi)^{-1}$$

or
$$\int_{N} f_{o}^{2} X_{E} d\lambda \leq \int_{N} X_{E} h_{o} d\lambda$$

or
$$\int_{E} (h_{o} - f_{o}^{2}) d\lambda \ge 0 .$$

Since this is true for all $E\subseteq N$, therefore, $h_{_{O}}^{}\geq f_{_{O}}^{2}$. This shows that $f_{_{O}}^{}\leq g_{_{O}}^{}$.

Conversely, if
$$f_0 \leq g_0$$
, then $f_0^2 \leq f_0 \cdot g_0 = h_0$.
Hence,

$$\begin{aligned} ||c_{\phi}^*c_{\phi}f||^2 &= \int_N |M_{f_0}f|^2 d\lambda \leq \int_N |f|^2 h_0 d\lambda \\ &= \int_N |f|^2 d\lambda \ (\phi \circ \phi)^{-1} = \int_N |f \circ \phi \circ \phi|^2 d\lambda \\ &= \int_N |c_{\phi}c_{\phi}f|^2 d\lambda = ||c_{\phi}c_{\phi}f||^2 .\end{aligned}$$

This completes the proof.

THEOREM 4.2. Let $C_{\phi} \in B(\ell^2)$. Then C_{ϕ} is quasi-hyponormal if and only if C_{ϕ} is paranormal.

$$\begin{split} \left| \left| C_{\phi} X_{\{n\}} \right| \right|^{2} &\leq \left| \left| C_{\phi} C_{\phi} X_{\{n\}} \right| \right| \quad \text{for all } n \in \mathbb{N} \text{ .} \\ \\ \text{or} \qquad \int \left| X_{\{n\}} \circ \phi \right|^{2} \, d\lambda &\leq \left(\int \left| X_{\{n\}} \right|^{2} \, d\lambda \, \left(\phi \circ \phi \right)^{-1} \right)^{\frac{1}{2}} \\ \\ \text{or} \qquad \int \left| X_{\{n\}} \right|^{2} \, d\lambda \phi^{-1} &\leq \left(\int \left| X_{\{n\}} \right|^{2} \, d\lambda \, \left(\phi \circ \phi \right)^{-1} \right)^{\frac{1}{2}} \\ \\ \text{or} \qquad \int_{\{n\}} f_{o} \, d\lambda &\leq \left(\int_{\{n\}} h_{o} \, d\lambda \right)^{\frac{1}{2}} \\ \\ \text{or} \qquad f_{o}(n) &\leq \left(h_{o}(n) \right)^{\frac{1}{2}} \\ \\ \text{or} \qquad \left(f_{o}(n) \right)^{2} &\leq h_{o}(n) = g_{o}(n) \text{ . } f_{o}(n) \quad \text{for all } n \in \mathbb{N} \text{ .} \end{split}$$

32

Hence $f_0 \leq g_0$. Thus C_{ϕ} is quasi-hyponormal in view of the previous theorem. THEOREM 4.3. Let $C_{\phi} \in B(\ell^2)$ and $\phi : N \rightarrow N$ be one-to-one. Then the following are equivalent.

> (i) C_{ϕ} is normal (ii) C_{ϕ} is hyponormal (iii) C_{ϕ} is quasi-hyponormal.

PROOF. The implications (i) implies (ii), (ii) implies (iii) are true for any bounded operator A. Here we show that (iii) implies (i). For this let C_{ϕ} be quasi-hyponormal. Then ϕ is onto, because if ϕ is not onto, then taking $X_{\{\phi(n)\}}$ to be the characteristic function of the singleton set $\{\phi(n)\}$ for $n \in N \setminus \phi(N)$ we have

$$||C_{\phi}^{*}C_{\phi}X_{\{\phi(n)\}}|| = 1 \text{ and } ||C_{\phi}C_{\phi}X_{\{\phi(n)\}}|| = 0$$

which is a contradiction. Since ϕ is one-to-one by hypothesis, therefore ϕ is invertible. By theorem 2.2 [6] C_{ϕ} is invertible and so by theorem 3.1 C_{ϕ} is normal.

REMARK. One has the following inclusion relation for classes of operators.

Normal \subseteq Quasi-normal \subseteq Hyponormal \subseteq Quasi-hyponormal.

All the inclusions are proper [2]. We show with the help of examples that these inclusions are also proper for composition operators.

EXAMPLE 1. Quasi-normal but not normal.

Let ϕ : N \rightarrow N be defined by

 $\phi(n) = \langle n/2$ if n is odd if n is even Then from theorem 3 of [3] it follows that C_{ϕ} is quasi-normal since $C_{\phi}^{*}C_{\phi} = M_{f_{\phi}} = 2I$, where I is the identity operator. But C_{ϕ} is not normal in view of theorem 3.1.

EXAMPLE 2. Hyponormal but not quasi-normal.

Let ϕ : N \rightarrow N be the mapping such that $\phi(1)$ and $\phi(2)$ equal 1 and $\phi(3n+m) = n+1$ for m = 0,1,2 and $n \in N$. Then $f_o(n) = 2$ if n = 1 and $f_o(n) = 3$ if $n \neq 1$. It is clear that $f_o \circ \phi \leq f_o$. Hence C_{ϕ} is hyponormal. But $(f_o \circ \phi)(2) \neq f_o(2)$, hence C_{ϕ} is not quasi-normal.

EXAMPLE 3. Quasi-hyponormal but not hyponormal.

Let $\phi : N \to N$ be the mapping such that $\phi(1)$ and $\phi(3)$ equal 2, $\phi(2)$ equals 1 and $\phi(3n+m) = n+2$ for m = 1,2,3 and $n \in N$. Then C_{ϕ} is quasihyponormal in view of theorem 4.1. But C_{ϕ} is not hyponormal because if $x \in \ell^2$ is such that x(1) = 2. x(3) = 1 and x(n) = 0 otherwise, then $||C_{\phi}^{\star}x|| = 3$ and $||C_{\phi}x|| = \sqrt{7}$. Thus $||C_{\phi}^{\star}x|| \not\leq ||C_{\phi}x||$.

REFERENCES

- Halmos, P. R., Measure Theory, Springer Verlag, Berlin Heidelberg -New York, East West Press, New Delhi-Madras, 1974.
- Shah, N. C. and Sheth, I. H., Some results on quasi-hyponormal operators J. of Indian Math. Soc. Vol. 39 (1975), 285-291.
- Singh, R. K., Compact and Quasi-mormal composition operators <u>Proc. Amer.</u> <u>Math. Soc. Vol. 45</u> (1974), 80-82.
- Singh, R. K., Composition operators induced by rational functions <u>Proc.</u> <u>Amer. Math. Soc.</u> <u>Vol. 59</u> (1976), 329-333.
- Singh, R. K. and Komal, B. S., Composition operators, <u>Bull. Austral. Math.</u> <u>Soc. Vol.</u> <u>18</u> (1978), 439-446.
- 6. Singh, R. K. and Komal, B. S., Composition operator on l^p and its adjoint <u>Proc. Amer. Math. Soc.</u> Vol. 70 (1978) 21-25.