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ABSTRACT. The author considers one of the main problems in finite translation

planes to be the identification of the abstract groups which can act as

col lineation groups and how those groups can act.

The paper is concerned with the case where the plane is defined on a

vector space of dimension 2d over GF(q), where q and d are odd. If the

stabilizer of the zero vector is non-solvable, let GO be a minimal normal

non-solvable subgroup. We suspect that GO must be isomorphic to some SL(2,u)

or homomorphic to A6 or A7. Our main result is that this is the case when

d is the product of distinct primes.

The results depend heavily on the Gorenstein-Walter determination of

finite groups having dihedral Sylow 2-groups when d and q are both odd. The

methods and results overlap those in a joint paper by Kallaher and the author

which is to appear in Geometriae Dedicata. The only known example (besides
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Desarguesian planes) is Hering’s plane of order 27 (i.e., d and q are both

equal to 3) which admits SL(2,13).

KEY WORDS AND PHRASES. Translation Planes, Co llineation Graphs, Finite
Geometries.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 50D35, 05B25, 20B25.

1. INTRODUCTION

A translation plane of order qd with kernel F GF(q) may be represented

by a vector space of dimension 2d over F. (The plane is usually said to have

dimension d over F.) Here the points are the elements of the vector space

and the lines are the translates of the components of a spread. A spread is

a class of d-dimensional subspaces (the components of the spread) such that

each non-zero vector belongs to exactly one component.

The group of collineations fixing the zero vector is called the trans-

lation complement; the subgroup consisting of linear transformations is the

linear translation complement.

The dimension and order are both assumed to be odd in this paper.

The Hering plane of order 27[8] is the only known example of a non-

Desarguesian translation plane of odd order and odd dimension in which the

collineation group is non-solvable. Thus, the question arises as to whether

there are others and what they are like (if others do exist). The trans-

lation complement contains SL(2,13) in the case of the Hering plane. The

Sylow 2-groups of the induced permutation group on are cyclic or dihedral

(when dimension and order are odd); it is possible that the key non-solvable

group is always SL(2,u) for some u or, perhaps, is a pre-image of A6 or A7.
This is suggested by the Gorenstein-Walter Theorem [5]. The author [14] has

previously shown that this is the case for minimal non fixed-point-free

groups (see below) which are non-solvable. However, a non-solvable linear
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group need not have a non-solvable minimal non-f.p.f, subgroup.

Throughout this paper G is a non-solvable group of linear transformations

and GO is a minimal normal non-solvable subgroup.

Our most important result is Theorem (3.5) which states that, if d is

the product of distinct primes, a minimal non-solvable normal subgroup of the

linear translation complement either has the form SL(2,u) or is a pre-image

of A6 or A7.
We have no new examples, so the question as to whether Hering’s plane of

order 27 is the only one (of odd order and dimension) remains open.

We include some informal discussion to indicate the importance of the

possibility that d might divide u-1 in the SL(2,u) case and then show that

there are severe numerical restrictions on this case and strengthen certain

results of Kallaher and the author [12].

The present paper is similar in method, spirit, and results to the joint

one. Here there are more restrictions placed on d and weaker initial

restrictions on the group.

The notation and language are more or less standard. Some of the

terminology and even some of the facts, may not be familar to every potential

reader of this paper. We finish this Introduction with a brief discussion of

thee matters and some remarks on notation.

A group of linear transformations is fixed point free (f.p.f.) if no

non-trivial element fixes any non-zero vector. One obtains a Frobenius

permutation group by adjoining the translations so that every f.p.f, linear

group is a Frobenius complement [11]. For a Frobenius complement, the

Sylow subgroups of odd order are cyclic; the Sylow 2-groups are cyclic or

generalized quaternion. (See [15].)
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A normal subgroup of a linear group G is a minimal non-f.p.f, group

with respect to G if it is not fixed point free but every normal subgroup

of G properly contained in it is f.p.f.

An irreducible group of linear transformations acting on a vector space

V is imprimitive if V is the direct sum of subspaces which are permuted by

the group. These subspaces will be called subspace of imprimitivity. An

irreducible group is primitive if it is not imprimitive.

A minimal invariant subspace of a reducible group G will sometimes be

called a minimal G-space. If V 1 is a subspace such that all of the minimal

G-spaces in V 1 are isomorphic as G-modules, then V 1 will be called a

homogeneous space.

The order of G is denoted by IGI. If G is the full group and GO is

a subgroup, 0 (Go) is the centralizer of GO in G.

The subgroup of G which fixes is G(C).

If o is a non-f.p.f, element, V(o) denotes the subspace consisting of

all vectors fixed by o.

Fit G denotes the Fitting subgroup of G.

This research was supported in part by the National Science Foundation.

2. LINEAR GROUPS WITH DIHEDRAL 2-GROUPS.

(2.1) LEMMA. Let G be a non-solvable group of linear transformations

and let GO be a minimal non-solvable normal subgroup. Let H be a cyclic

normal subgroup of G included in GO Then H is in the center of GO

PROOF. If GO FIO (H.) is non-solvable, then GO centralizes H. Otherwise

Go/GOFf C(H) is isomorphic to a non-solvable group of automorphisms of H

(induced on H by conjugation). But the automorphism group of a cyclic group

is solvable.
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(2.2) LEMA. Let G be a non-solvable group of linear transformations

and let GO be a minimal non-solvable subgroup. If the Fitting subgroup of

GO is fixed point free, then it is the center of GO
PROOF. Let Fit GO be the Fitting subgroup of GO Then Fit GO is

the direct product of its Sylow subgroups since it is nilpotent and the

Sylow subgroups of odd order are cyclic, since it is a Frobenius complement.

The Sylow 2-group in Fit GO is either cyclic or generalized quaternion. (See

Passman [15].) Suppose that the 2-group in Fit GO is a generalized quaternion

group Q. Then GO/O (Q) F GO is isomorphic to a group of automorphisms of Q.

The automorphism group of Q is a 2-group or S4 (see Passman [15].) and hence

is solvable. Hence (Q) F GO is non-solvable; by the minimal property of

GO GO 0 (Q) G
O

This is a contradiction since Q is a non-abelian

subgroup of GO Thus Fit GO is the direct product of cyclic groups of

relatively prime order and is cyclic. The rest of the argument follows from

the previous Lemma. Using reasoning similar to that used above, GO modulo

the subgroup centralizing Fit GO is a group of automorphisms of a cyclic

group and hence is solvable, so GO must centralize Fit GO But Fit GO includes

Z(Go), so Fit GO Z(Go).
(2.3) THEOREM. If G is a non-solvable group of linear transformations

on a vector space V over GF(q) with a minimal non-solvable normal subgroup

GO if Fit GO is fixed point free and if the Sylow 2-groups in G-0 (the

factor group of GO modulo its center) are dihedral then GO is SL(2,u) or

PSL(2,u) for some odd u or G-0 A6 or A7.
PROOF. Let H be the maximal normal subgroup of G which is included in

GO but is not equal to GO
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Then H is solvable and includes Fit GO By the previous Lemma Fit

GO is Z(Go). We claim that H Fit GO If not, H has a normal subgroup

B such that B/B Fi Z(Go) is a non-trivial and abelian. The B would be

nilpotent and hence in Fit GO Therefore, H Fit GO
It follows from the definition of H that Go/H has no proper

characteristic subgroup- i.e., it is characteristically simple. Hence it

is a direct product of isomorphic simple groups. (See Huppert [I0], Satz 9.12.)

By hypotheses, the Sylow 2-groups of G-0 GO H Go/Z(GO) are dihedral. It

follows that GO is a simple group with dihedral Sylow 2-groups. Furthermore,

the minimal property of GO implies that G GO and hence H is a Schur

multiplier for G-O. By Gorenstein and Walter [5], G-0 PSL(2,u) for some odd u

or is equal to A7. Furthermore, if G-0 PSL(2,u) and u # 9 then GO SL(2,u).

(See Huppert [10], Satz 25.7.) Note that PSL(2,9) A6.
One of the key assumptions of Theorem (2.3) was that Fit GO is fixed

point free. The next few Lemmas develop the machinery for examining the case

where Fit GO is not fixed point free. Dixon [2] gives a similar development

for vector spaces over an algebraically closed field. We have attempted to

modify Dixon’s argument to apply to vector spaces over a finite field.

(2.4) LEMMA. Let G be a group of linear transformations acting

irreducibly on a vector space VF of dimension n over GF(q) F. Suppose

that the non-singular linear transformations which commutewith G are all

scalars. If o is any element of GL(n,q) such that trace p 0 for all

p in G, then o O.

PROOF. Let = {I trace op 0 V p in G}. The ring of all linear

transformations on VF is a vector space of dimension n2 over F and is a

subspace.
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Furthermore G acts in a natural way as a group of linear transformations

2on this vector space of dimension n and G leaves invariant.

Let $ be a minimal G-invariant subspace of . By Lemma (2.7) in

Dixon [2], the dimension of is n and there is a vector v in V F such that

<v> VF.
Let {uI, u2’ n } be a basis for $. The {Vl1, vl2, vn} is

a ba$i for Vf. Label these vectors v I, vn respectively.

Let w be an arbitrary non-zero element of V and let. a,v,jJ V . ailJJ
where the aiF.j Let (w) be an eigenvaluewl

of the matrix (aij). If F, let E be an extension which contains ,.
Then {(w- .v)1, (w- },v)l2, (w- v)ln} is a basis for the vector

space <(w- v)$>. This is a subspace of VE, where VE is a vector space of

dimension n over E.

Note that wl 1 vu v[. aijj li]. The determinant of the matrix

(aij) },I is zero, so the vectors (w v)i are dependent and the dimension

of <(w- v)> is less than n.

Thus <(w v)> is a subspace of VE which is invariant under G and

is not VE.
We had vl v

i.
Let v wi.

Now v and w are in VF (which is

embedded in VE). Let the mapping T be defined by wit >,v
i. Then T

becomes a linear transformation on VE by defining (ClW I + + CnWn)T
Cl(WlT + + Cn(WnT) for c 1, cn E. (Note that T also acts as a

linear transformation on VF.)
Let x be an arbitrary member of V F. Then x + xT belongs to

<(w- v) > Suppose that XlT x2T. Then (x I + XlT) (X2 + X2T) x I x2

is a vector in VF which belongs to <(w- ) >.



194 T. G. OSTROM
Now <(w -v)> I"1 V F is a G-invariant subspace of VF and, since G

is irreducible, is either the null space or all of V F. Suppose that

VF <(w- v) >. A basis for VF is also a basis for VE so in this

case <(w- >,v)$> VE, which is a contradiction.

Hence Xl x2T, xI x2 e V F implies xI x2 so T is a non-singular

linear transformation on VF. If p e G and x VF, then (x + XT)p Xp + XpT

SO commutes with G. Hence z is a scalar transformation on VF. We had

W.T V.. Hence ; c F and E F.

Hence <(w v)j > is a G-invariant subspace of V F of dimension less

than n. Hence <(w )tv) > is the null space for each w 0 in VF.
In particular this holds for w v 1, v2, vn. Let (vi) >’i"

Then (vI XlV 0 for 1, n. Hence VlPj jvj Xjvj.
Using v 1, vn as a basis and thinking of Pl’ lan as matrices

over this basis we get

Xl 0...0

kI 0 0

Ia I etc.

hI 0 0

so that, in general, trace Pi >’i" But, by definition of and , trace

pi p 0 for each p in G, including the case where p is the identity Hence

all of the i are equal to zero and all of the i are zero.

REMARK Except for the consideration of the possibilities that the

eigenvalues %i might be in some extension this is the proof of case I,

Theorem 2.7A in Dixon [2].
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(2.5) LEMMA. Under the hypotheses of (2.4) the ring generated by the

linear transformations in G has dimension n2, i.e. it is the full ring of

all linear transformations on V..
PROOF. (See Dixon, Theorem 2.4B.) The argument goes through without

change except that Dixon requires the field F to be algebraically closed in

order to use Theorem 2.7A. If his Theorem 2.7A is replaced by our Lemma

(2.4) his proof applies here.

(2.6) THEOREM. Let G be a group of non-singular linear transformations

acting irreducibly on a vector space V of dimension n. Suppose tat
G’ <_Z(G) and that Z(G) consists of scalars then [G-Z(G)] n2.

PROOF If , p G then o-1 -1 1p op Z(G), so p- op oh for some
-1in Z(G). Hence trace trace p p }, trace . If k 1 for all

choices of p then Z(G); otherwise trace o O. Thus, the trace is zero

for all elements of G not in Z(G).

By (2.5), the ring of all linear transformations on V has a basis

1’ 2’ n2 in G. For an arbitrary in G, z aioi, where

a F. Suppose that as O. Then
J

trace ccj 1: trace [ij aicicj + ajl
1Since o and oj are independent for j, oio.j is not in Z(G) and

has trace zero.

-1Hence trace o_. na:. Note that we cannot have n 0 mod the

characteristic, for otherwise the trace would be zero for all elements of G,

contrary to Lemma (2.1).

Thus, for each o in G 3 j ) belongs to the coset ojZ(G). By the

independence of the c., j is unique. Hence c1, On2 form a set of

representatives for the distinct cosets of Z(G).
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(2.7) LEMMA. Let V be a vector space over GF(q) where the dimension

of V is the product of distinct primes. Let G be an irreducible group of

linear transformations on V. Suppose that G has a normal subgroup GO
such that" (1)the unique maximal abelian normal subgroup of GO consists of

scalars; (2) for some prime u, a Sylow u-group S of Fit GO is non-abelian

and S/Z(S) is abelian; (3) S is faithful on its minimal invariant subspaces.

Then u is one of the primes dividing the dimension and IS/Z(S)I u2.
PROOF. S is characteristic in GO and hence normal in G. Hence the

dimension of each minimal S-space divides the dimension of V. Let n be the

dimension of a minimal S-space. By the previous Theorem, IS/Z(S)I n2.
But n must be a power of u and divide the dimension of V. Hence n u.

(2.8) LEMMA. In the notation of (2.1) (2.3) suppose that Fit GO is

not fixed point free. Then GO includes a subgroup W which is a minimal

non-f.p.f, group with respect to G, where W is a w-group from some prime w.

If W0 is the maximal normal subgroup of G included in W but not equal to

W, then WOZ(GO) and W/W0 is elementary abelian.

If Fit GO is not fixed point free, it contains an element of prime order

which is not fixed point free. Since Fit GO is nilpotent, it is a direct

product of its Sylow subgroups so one of the Sylow subgroups of Fit GO is a

non-f.p.f, normal subgroup of G. Indeed G has a minimal non-f.p.f, group

W included in Fit GO where W is a w-group for some prime w.

Let W0 be a maximal normal subgroup of G included in W but not equal

to W. If w is odd, then W0 is cyclic, since the Sylow subgroups of odd

order in a Frobenius complement are cyclic. In this case, WO Z(GO)
by Lemma (2.1). If w 2, then W0 is either cyclic or generalized quaternion.

In the latter case 0 (WO) FIGO is a proper subgroup of GO normal in G and

hence solvable. Thus GO/ 0 (WO) F GO is non-solvable. But this factor
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group is isomorphic to a group of automorphisms of a quaternion group and

this automorphism group is solvable. (See Passman [15], pp. 74, 76.)

We conclude that W0 is in Z(Go).
(2.9) THEOREM. Let G be a group of linear transformations acting

on a vector space V. Suppose that G is irreducible and

(1) The Sylow 2-groups of G/Z(G) are diherdral.

(2) G is non-solvable with a minimal non-solvable normal subgroup GO
(3) The dimension of V is the produce of distinct primes.

Then either Fit GO is fixed point free so that GO satisfies the

conclusion of (2.3) or Fit GO contains an elementary abelian group W which

is a minimal non-f.p.f, group with respect to G.

PROOF. The theorem holds if W of (2.8) is non-trivial and W0 is

trivial, so suppose W0 is non-trivial. We wish to apply (2.7). For this

purpose, we can restrict our attention to a minimal Go-space V 1. Note that

the dimension of a minimal Go-space is also the product of distinct primes.

Now all of the minimal Z(GO) spaces in a Go-space are isomorphic as

Z(Go)-modules. As in Hering [7] Hilfssatz 5, there is a field K so that the

additive group of V 1 is a vector space over K and the elements of Z(Go)
become scalars.

Now consider the action of W on a minimal W-space in V 1. Again, the

2dimension is a product of distinct primes, so (2.7) implies that IW/WoI w

and w is one of the primes dividing the dimension of V over F.

Let G G/C (w). Then G induces, by conjugation, a group of auto-

morphisms of IV. That is, there is a homomorphism from G into GL(2,w), since

is elementary abelian of order w2. The kernel of the homomorphism is the

subgroup of G which centralizes W. If the subgroup of GO which centralizes

W were non-solvable, then GO would centralize W. We wish to show that this
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cannot be the case.

The reader may verify that centralizes W if >, lo-1>‘o 0 (W) for all

o in W. (Here >‘ is a pre-image of >‘.) In particular, if >‘ GO o W
-I

we must have >, lo-1>,o for some in 0 (W) F GO Then >‘ lo-1>‘ o

-IBut >‘ lo-1>‘ W, so o W and W. Thus WOZ(GO)-
More particular, let >‘ be an element of GO such that I>‘l is a prime

distinct from w. Then o-lxo L; I>‘I I>‘I. Since Z(GO) and

is a power of w this implies that 1. That is, if >‘-1o-1},o (" (W),

then >‘ commutes with >‘ if I>‘I is a prime distinct from W.

The subgroup of GO generated by all elements >‘ of prime order # w is

a characteristic subgroup of GO Call this subgroup G2. If G2 GO then

GO centralizes W, but W is a non-abelian normal subgroup of GO This is a

contradiction, so G2 must be a proper subgroup of GO and hence solvable.

But, except for the w-groups, the Sylow sugbroups of GO are included in

G2, so Go/G2 is a w-group. But if G2 is solvable, Go/G2 must be non-solvable,

so we again get a contradiction. Thus W0 must be trivial if W exists and W

must be abel ian.

(2.10) LEMMA. Suppose that the Sylow 2-groups in G/Z(G) are dihedral.

Let H be a maximal normal subgroup of G included in GO but not equal to

GO Then Go/H is simple and either H W[c’(W) FI GO or W Z(Go).
PROOF. By much the same argument we just used, Go/H is a direct product

of isomorphic simple groups which, however, must be non-solvable this time.

is solvable. Since H includes Z(GO) theA group with cyclic Sylow 2-groups

Sylow 2-groups of Go/H must be dihedral. The direct product of dihedral

groups is not dihedral, so Go/H is simple.

Also H H[c(H) FI GO] so Go/H is isomorphic to a group of outer

automorphisms induced on H by conjugation. This group of automorphisms
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leaves W invariant; the subgroup acting as inner automorphisms of W is

induced by W[O(W) F GO]. The outer automorphisms of H which act as inner

automorphisms of W will be a normal subgroup. But Go/H is simple so this

normal subgroup is either trivial or is the whole thing.

Suppose that every element of Go/H corresponds to an inner automorphism

of W. Then every element of GO belongs to W[ O(W) F GO]. But W[ (XW) F GO]
is solvable unless ( (W) F) GO is non-solvable. In the latter case W Z(Go).

Otherwise, the group of outer automorphisms induced on W is isomorphic to

the group of outer automorphisms induced on H so Go/H Go/W[c (W) (I GO].
Hence H W[C(W) F GO] in this case.

3. TRANSLATION PLANES OF ODD ORDER AND DIMENSION

The results of Theorems (2.3) and (2.8) have implications for translation

planes because of the following result of Hering [9], Theorem 1.

(3.1) LEMMA. Let 11 be a translation plane of order qd with kernel

GF(q), where q and d are odd. Let G be a subgroup of the linear translation

complement and let G be the induced permutation group on C- i.e. G is the

factor group of G modulo the scalars. Then the Sylow 2-groups in are

cyclic or dihedral.

REMARK. Groups with cyclic Sylow 2-groups are solvable. (See Burnside

[1], p. 326, Theorem II.)

Another result of Hering is pertinent. (See [9] Theorem 2.)

(3.2) LEMMA. Under the assumptions of (3.1), let G(C) be the subgroup

of G stabilizing a component C. Then G() is solvable.

(3.3) LEMMA. Suppose that W of (2.8) is abelian and non-trivial, and

G is irreducible. Then 11 (as a vector space) is a direct sum VlL e Vk
of homogeneous W-spaces. G induces a transitive permutation group on

V 1, .--, VK; W is not faithful on Vi, 1, ---, k, and k is odd.



200 T. G. OSTROM

PROOF. If W0 is trivial, W is elementary abelian by (2.9). Thus if

and the subspace V() pointwise fixed by >, is non-trivial, then W

leaves V(>,) invariant. Hence W is not faithful on its minimal spaces.

Since each homogeneous space is a direct sum of minimal spaces that are

isomorphic as W-models, W is not faithful on its minimal spaces.

The rest of the Lemma follows from Clifford’s Theorem. (See [4].)

Furthermore k must divide the dimension 2d of 11 as a vector space.

Let W(Vi) be the subgroup of W which fixes V pointwise. Note

that the fact that W is abelian and V is a homogeneous W-space implies

that each element of W which is not f.p.f, on V is in W(Vi). Furthermore

a fixed point free w-group must be cyclic and W is elementary abelian so

W/W(Vi) is cyclic of order w. Thus if W(Vi) W(Vj) then V and Vj must

be isomorphic as W-modules. But this is not the case if Vi, Vj are

homogeneous W-spaces.

Let Vi* be the subspace pointwise fixed by W(Vi). Then Vi* is a

direct sum of homogeneous W-spaces. If W(Vl), W(V2), are distinct

subgroups (not necessarily disjoint) then we must have Vi* Vi. But Vi*
must be a subplane or a subspace of a component of the spread.

If V.* c for some component C, then is invariant under W. If

W leaves just one or two components invariant then G must fix or interchange

these two and cannot be non-solvable. If W has 3 invariant components

every non-f.p.f, element of W must fix a subplane pointwise.

Hence V is a subplane and has even dimension. This implies that k

is odd, since 2d k dim V 1.

(3.4) THEOREM. Let G be a non-solvable and irreducible subgroup of

d
the linear translation complement of a translation plane 11 of order q with

kernel GF(q), where q and d are odd. If W of (2.8) is non-trivial, then
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W0 must be non-trivial.

PROOF. Suppose that W0 is trivial, so that (3.3) holds. Let G(V 1)
be the stabilizer of V1 in G1. The index of G(V1) in G is equal to k,

so a Sylow 2-group of G(V 1) is a Sylow 2-group of G.

Let G(V 1) be the induced group on V 1 i.e. G(V 1) may be identified

with the factor group obtained by taking G(V1) dulo the subgroup fixing V 1

pointwise. Then W is a normal subgroup of order w in G(Vl), and all of the

minimal W spaces in V 1 are isomorphic as W-modules. As in Hering [7],

G(V1) rL(s,qt) and the subgroup centralizing W is isomorphic to

G(V1) 1 GL(s,qt) for some s, t such that st dim V1. Thus the index of

e (W) (I G(VI) divides t and is not divisible by 4.

Hence the index of G(V 1) rl (2 (W) in G(V1) is not divisible by 4. Let S

be a Sylow 2-group of G(Vl). As pointed out at the beginning of the proof,

S is then a Sylow 2-group of G. Hence S/S rl e (W) is a Sylow 2-group of

G/C (W) and its order is I or 2. This implies that G/e (W) is solvable.

Hence Go/G0 FI e (W) is solvable. This is a contradiction since GO 1 I2 (W)

is solvable and GO is non-solvable. We conclude that W0 must be non-trivial.

d(3.5) THEOREM. Let 1I be a translation plane of order q with kernel

GF(q), where q and d are odd. Let G be a subgroup of the linear translation

complement. Suppose that G is non-solvable and irreducible with a minimal normal

non-sOlvable-G0 and that d ks the product of distinct primes. Then either

SL(2,u) for some odd u or G-0 A6 or A7. Here G-0 Go/Z(Go)-
PROOF. This is a consequence of (3.4), (2.9), and (2.3), except for the

possibility that we might have GO PSL(2,u). But PSL(2,u) contains an

elementary abelian group of order 4 in which all three involutions are

conjugate. In a translation plane of odd order and dimension all three

involutions would be affine homologies. This cannot happen.
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It may be worth while to take a look at some aspects of the ways that

GO SL(2,u) can act on a translation plane. One possibility is that u is

a power of the characteristic p and that the p-elements are affine elations.

If GO contains affine homologies of prime order greater than 5 then a result

of the author [13] shows that GO contains affine elations. The group generated

by these elations will be normal in GO and, in fact, equa) to GO

(3.6) LEMMA. Suppose that GO SL(2,u), u > 3, is a normal subgroup of

the linear translation complement. Suppose that u is prime and that r is

a prime factor of u(u + I). Then, if GO contains a non-f.p.f, element of

order r, at least one of the following holds:

(a) For some component , G() > SL(2,3) and r 3.

(b) For some component C fixed by %, G() is reducible on .
(c) For some component C fixed by , G() is not faithful on .
PROOF. If , is not fixed point free, then >, fixes some component C

and is not fixed point free on 9. If (c) does not hold, we may assume that

G(C) is faithful on .
Then G() > G() N GO and G() F GO is a solvable subgroup of GO

since G(C) is solvable. If r > 3, < }, > will be characteristic in the

maximal solvable subgroup of GO which contains so that < > will be

normal in G(). The subspace of C which is pointwise fixed by will

then be invariant under G() so that G(C) is reducible on .
If r 2, , is the unique involution in GO For a plane of odd

dimension i.e., d is odd, a non-fop.f, involution in the translation comple-

ment is a homology. This would come under conclusion (c); actually it cannot

happen since the axis of the homology would be invariant under the non-solvable

group GO

If r 3, we have the possibility (a) with SL(2,3) characteristic in
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Gon G().

(3.7) COROLLARY. If r divides u + I, the conclusions of (3.6) hold

even if u is not prime.

REMARK. The cases where u is not prime or where G contains affine

homologies of order 3 or 5 were handled in the Kallaher-Ostrom paper [12]

under the assumption that a certain p-primitive divisor of qd I (which

turned out to be u) divided the order of the group induced on by G().

Note that when (3.6) holds and there are no affine perspectivities, the orders

of the non-f.p.f, elements in GO will divide u I if G() is irreducible.

Let G()* denote the group induced on by G() i.e. G()* is the

factor group modulo the subgroup which fixes pointwise. If G()* has a
dnormal subgroup whose order is a prime q-primitive divisor of q I, then

G()* has an abelian irreducible normal subgroup. In this case
dG()* rL(l,q ). This is what happened in the Kallaher-Ostrom paper but

this situation may arise without reference to primitive divisors. Hence we

prove the fol owing Lemma.

(3.8) LEMMA. Suppose that G()* is isomorphic to a subgroup of

lL(l,qd) and contains an element * such that (a) Io*I is prime. (b) *
fixes at least one point 0 on . Then I*I divides d.

PROOF. lL(l,qd), in its action on a vector space of dimension d over

GF(q) has a cyclic normal fixed point free subgroup of order qd I and

index d.

REMARK. In the Kallaher-Ostrom paper [12], Theorem 6.1, it turned out

that d divides u I. A subgroup of a Frobenius complement whose order is

the produce of two distinct primes must be cyclic. SL(2,u) has a subgroup

of over u(u I) which is not fixed point free for u > 5. Putting this

together with (3.6), it appears that an important subcase for the possible
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action of SL(2,u) is the one where the orders of the non-fixed point free

elements divide u 1. In the context of (3.8), especially if d is prime,

we again arrive at a situation where d divides u 1.

(3.9) LEMMA. If u is not a power of p, if p and d are both odd,

and if d divides u -1 then d 1/2(u 1) or d 1/4(u 1).

PROOF. By Harris and Hering [6] u < 2(2d) + 1. (The vector space has

dimension 2d.) Thus d > 1/4(u 1) and d # u 1 if u and d are both odd.

(3.10) LEMMA. If d (u 1) then GO SL(2,u) is absolutely

irreducible; if d 1/2(u 1) then either GO is absolutely irreducible or has

an absolutely irreducible representation of dimension d over some extension

of GF(q).

PROOF. By Harris and Hering, the dimension of any representation

(irreducible or not) is at least 1/2(u 1).

(3.11) THEOREM. Let 11 be a translation plane of order qd and kernel

GF(q). Suppose that the linear translation complement of G of 11 has a

normal non-solvable sugbroup GO isomorphic to SL(2,u) and that

(a) q and d are odd.

(b) d divides u 1.

(c) For each component , G(C) is irreducible.

(d) GO contains no affine homologies or elations.

(e) GO
[ G() has no normal subgroup isomorphic to SL(2,3).

(f) (IGoI, p)= 1.

Then either u + 1 is a power of 2 and d 1/2(u 1) or 1/2(u + 1) is an odd

prime and d (u 1).

PROOF. If (IGoI, p) 1 and if GO is absolutely irreducible, it has

a complex representation of dimension 2d (u 1) and the representation

we are using can be obtained from the complex representation. (See Dixon [2].)
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In the other case, GO is reducible over a field extension but GO can be

obtained from a complex representation of dimension u 1.

Suppose that u + 1 has an odd prime factor r. Let be an element of

order r in GO Under the hypotheses, it follows from (3.7) that k is fixed

point free.

Let (!) be a complex rth root of 1. Then the character of has the

a0 + ale +-..+ ar_lEr-1 where a is the multiplicity of the eigenvalueform

Ei, so that a0, a I, are non-negative integers. If e is the dimension of

u 1the complex representation, a0
+ a I

+-..+ ar_ 1 e. First, suppose e 2

From character table (see Dornhoff [3]) the character of is equal to -1.

But 1 + E +.--+ Er-1 O. Thus a0 + alE) +.-.+ ar_iE)
r-1

O + E)2 +...+ E)r-i
a0 + (a I 1)E)+.--+ (ar_l)E)r-1 O. But ) is fixed point free and thus has

no eigenvalues I. Hence a0 0 in this case. But E),..-, E)r-i are linearly

independent over the integers since the polynomial 1 + x +...+ xr-1 is

irreducible over the integers. Hence a I a2 ar_ 1 1 and

u-1 u+la0 + ...+ ar_ 1 r- 1 e- 2 and r- 2

Now suppose e u I. Then the character of % has the form _(E)i + o-i).

iE)r-I _E)i _E)-i Again a0 0 since is f p.fHence a0 + a I E) +-.. + ar_
If we take the subscripts a 1, a2, etc., mod r, we may write

alE) +..-+ (a + 1)E) +.--+ (a_i + 1)E) + ar_lE)
r-1 =0

if 0. This has no solutions for non-negative a i.

Suppose O, so

alE) +--. + ar_lE)
r-1 -2 2(0 + E)2 + + Er-1)

-2 E)r- 1(a I 2)E +..-+ (ar_ 1 0 implies

a I a2 ar_ 1 2

so
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SO

then

a0
+.--+ ar_ 1 2(r 1) u 1

r-I u- 1 u+l
2 r- 2 as before.

Recall that, by (3.9) d 1/2(u 1) or (u 1). If r exists, so that

1/2(u + 1) is odd, then u 1 0 mod 4 so that if d is odd, d cannot be equal

to 1/2(u i). Thus if 1/2(u + 1) is prime, d (u I).

If r does not exist, so that u + 1 is a power of 2, then (u I) is

not integer so that d 1/2(u 1) in this case.

We can use (3.11) to make a slight improvement in Theorem 6.1 of [12].

In the following corollary, u is a prime p-primitive divisor of qd I where

p is prime and q pko G has the usual meaning of this paper and GO is a

minimal non-solvable normal subgroup of G. Here and earlier in this paper

when reference is made to the group induced on by G(), it should be under-

stood that the subgroup fixing pointwise has been factored out. We

continue to assum q and d are both odd.

(3.12) COROLLARY. Suppose that, for each component , the order of the

group induced on by G() is divisible by u and that GO exists and is

non-trivial. Suppose that 11 is non-Desarguesian. Then at least one of the

following holds.

(a) u 13, d 3, q 3, G0 SL(2,13)

(b) u 2d + I, q p, u + I is a power of 2 and GO SL(2,u).

(c) u 2d + I, q p, p divides d and GO SL(2,u).

(d) u 7, d 3, q p and : A7.
PROOF. In Theorem (6.1) of [12], it is shown that, under the present

hypotheses we have case (a) or (d) or GO SL(2,u) q p, u 2d + 1.
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Condition (d) of (3.11) is also satisfied if GO SL(2,u). (It is not clear

from the statement of Theorem (6.1) but the possibility that GO might contain

affine elations is disposed of by Lemma (6.3) of [12].)

In Theorem (6.1) of [12], G is assumed to be generated by its Sylow

u-groups and the conclusion is that G GO Thus GO F G() is faithful

for each and its order is divisible by the p-primitive divisor u of qd 1.

This implies that G()c rL(1,qd) and that condition (e) of (3.11) is met.

If (IGoI, p) 1 and u 2d + 1, we get case (b) of the conclusion of

our corollary from (3.11).

If p divides IGoI Lemma (3.6) tells us that, under present circumstance

p must divide u 1. But u 1 2d and p is odd so p must divide d.

REMARK. The factor group G/GOC’ (GO is isomorphic to a group of outer

automorphisms of GO If G > GO SL(2,u) where u is a prime, the outer

automorphism group is trivial, so that G is isomorphic to GO C,(Go). If

GO is irreducible, then C (GO must be fixed point free.

REMARK. Later work of Kallaher and the author has shown that case (d)

of (3.12) does not happen.
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