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ABSTRACT. Let {Xk} be independent random variables with EXk 0 for all k

and let {ank: n > i, k > i} be an array of real numbers. In this paper
n

the almost sure convergence of S E a Xk, n 1,2, to a constant is
n nk

k=l
studied under various conditions on the weights {ank} and on the random variables

{Xk} using martingale theory. In addition, the results are extended to weighted

sums of random elements in Banach spaces which have Schauder bases. This

extension provides a convergence theorem that applies to stochastic processes

which may be considered as random elements in function spaces.
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i. INTRODUCTION.

Let (, F, P) denote a probability space and let } be a sequence of

independent random variables with E 0 for all k 1,2, Let

{ank Z an e i, k e i} be an array of real numbers and define S
n k=l nk ’n 1,2,

Several results have been obtained in recent years concerning the almost

sure convergence of the sequence {S } under various conditions on the weightsn

{ank} and boundedness conditions on the random variables {} or on their

moments. For example, Chow (1966) and Stout (1968) required conditions on

{ank} such as (i) E a
2 < K nY for some constants K and y or
nk

(ii) A Z 2 %
n ank < for all n and l exp(--) < for all % > 0, and

k--i n--i n
either a uniform bound on certain moments of the random variables {} or the

(a2 2
condition that for all k, E[exp(t)] < exp = /2) for some a > 0 and all

real numbers t. Stout’s (1968) results concerned the complete convergence of

{Sn} in the sense of Hsu and Robbins (1947) which implies almost sure con-

vergence. Also, Rohatgi (1971) considered the almost sure convergence of

{Sn} to zero by requiring the uniform dominance of {} in the sense that

there exists a random variable X such that e[lla] e[IXla] for all a > 0

and all k, where X has a finite (I + I/a)th absolute moment and > 0 is such

that maXlank 0 (n-a). (It was also assumed that lim ank 0 for all k and
k n-o

Z lank C for all n.) More recently, Chow and Lai (1973) have studied
k=l i
the almost sure converzence of {n- S } (some i 2) for independent and

identically distributed random variables with finite th absolute moments and

with somewhat weaker conditions on the array {ank} than those in Stout (1968).

Lai (1974) has indicated the importance of weighted sums in control charts.
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Chow (1966) defined a random variable X to be generalized Gaussian if

there exists a number > 0 (referred to here as the parameter) such that for

every real number t, E[exp(t X)] < exp(
2 t2/2). Special cases of generalized

Gaussian random variables are normal with zero means or bounded, symmetric

random variables.

In Section 2 of this paper the definition of a totally .$eneralized

Gaussian random variable is given. Then the almost sure convergence of {S }
n

for independent (but not necessarily identically distributed) random variables

which are totally generalized Gaussian is obtained using martingale theory

with very general conditions on the sequence of weights {ank}. The

relaxation of the restrictions on the weights which is achieved in these re-

sults is summarized and discussed in Section 3. Also in Section 4 the

results for random variables are extended to sequences of independent random

elements in separable Banach spaces. This extension will provide a convergence

theory for weighted sums of stochastic processes which mav be considered as

random elements in function spaces, such as the Wiener process on a closed

interval [0, T] for some T > 0 [see Billingsley (1968)].

2. WEIGHTED SUMS OF RANDOM VARIABLES.

Let {ank: n > i, k > i} be a double sequence of real numbers satisfying

the following conditions:

(i) ank > 0 for all k and n, an_l, k > ank
for k 1,2,...,n-i and E > E for all n;

k=n
an-l,k

k=n
ank

2
(2) Y. ank _< F for all n and some positive constant r;

k=l
2

/ 0 as n / ; and3 E anl"k=n+l

(4) lira ank 0 for all k.
n
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A sequence {ank} satisfying Conditions (1)-(4) will be called a Type (P)

sequence.

Conditions (1)-(4) will be considered in detail in Section 3, and sev-

eral examples of sequences which are of Type (P) will be given there. Those

examples will contrast previous results with the results which are given in

this section and will show that the weights can be very different from the

-I
traditional weights ank n if k i,..., n. However, in Section 3, the

traditional weighting is shown to be a special case of a Type (P) sequence

k-3/4 if k n + i,by letting ank
DEFINITION i. l,et X be a random variable such that its expected value

EX exists. Let I
A

be the indicator random variable for the event A, and let

X+ X I[X > 0]
and X- -X I[X<0]. Then X will be said to be totally

generalized Gaussian if X+- EX+ is generalized Gaussian with parameter

< 2
1/2

and X- EX- is generalized Gaussian with parameter < 21/2

We now prove the following theorem.

THEOREM i. Let {} be independent random variables with E 0 for

each k and let {ank} be a Type (P) sequence. If for each k, is totally

generalized Gaussian, then there exists a constant y such that as n-o
n

$ 7
n k=l ank y almost surely.

PROOF. For each k, let X
k

and be defined as in Definition i.

Then - , k 1,2 Also, define F+ {X X+} to be
n n

andsigma-field generated by X1,... n n ank
n k=l

S E a for n 1,2,
nkn kffil

{} are independent random variables, and by hypothesis we mayNow,

obtain for every k

_< exp (t
2 + tEXt) (2.1)
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for all real numbers t. Define

n

n n ank . akk g ), n 1,2,
k=n+l k=l

Then for n 2 by Condition (I) on {ank} and inequality (2.1) we obtain

n

n n-I ank exp
k=n+l k=l

n-i 2 F+ ]
k=l k=n+l

n
x =p(- I

n-I n

k=l k+l k=l
n-i 2 v+( ank + ank)P(a

2 + a E)
i k=n+l nn nn

n
xexp (-I a )

k=l
n-i n-i

=p( ank K+ 2
ank p (- akk g

k=l k k=l
n-i 2

n-I

k=l k n-i k-
i

Y-I a.s.

Hence, {Y} is a pertinEale th respect to {}.
For each n

2
n v+EIY+ E[exp(S+ + ank- akk E.)]n n k=l k=l

[ E[P(ank )]]p ank- E )
kffil kffin+l i
n 2 + 2 n
[H P(ank + ank E.)] p( ank- a)
k=l k=n+l

2
n

E+]exp ank) p [[ (ank a)
k=l k=l

_< exp (r)<
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by inequality (2.1) and Conditions (i) (that an_l,k> ank for k 1,2, n-i

and (2) on the {ank}. Thus sup EIY+I < o, and by the martingale convergence
n

y+theorem [Tucker (1967)], there is a random variable ZI such that n/ZI a.s.

By Condition (3) of a Type (P) sequence, there exists a random variable ZI

such that S+ n
n- Ek=l akk E /Z

I a.s. Similarly, there exists a random

variable Z
2

such that S-n ik=in akk E/Z2 a.s. Next, EX
k

0 implies that

$/E E. Hence, S S
n n n

n n
(Sn
+

Y’k=l akk m) (S
n Y’k=l akk m)/ ZI Z

2
Z a.s.

By Condition (4) of Type (P) sequence, for each j 1,2,... anj Xj 0

a.s. as n-o. Therefore, Sn (anlXl + + an,k_l -i + (ank +
n

+ a X / Z a.s. implies that for every k, a X / Z a s Thus,nn n
j--k n j

Z is measurable with respect to the tail sigma-field of {} and there exists

a constantysuch that P[Z --y] I, Tucker (1967, p. 75). Therefore, S /y
n

a.s. III

If, in addition to the Conditions (1)-(4), the sequence {ank} satisfies
n

2
the condition that Y. ank 0 as n-o, then the following theorem may be ob-

k=l
tained.

THEOREM 2. Let {} be a sequence of independent random variables with

EXk 0 for all k, and let {ank} be a Type (P) sequence. If is totally
n 2

generalized Gaussian for each k, and if ank/ 0 as n / , then
n k=l

Sn k=F’l ank + 0 almost surely as n / .
PROOF. By Theorem i, there exists a constant y such that S * y almost

n

surely. Hence, S / ’ in probability. Let S+ and S- be defined as in the
n n nn+

E$
+ r. EXI By Chebyshev’s inequalityproof of Theorem i. Define n n k=l

ank
for 4>0
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n- n > ] -< var(S ank vat( ).
k--i

Since 0 E is generallzed Gausslan with < 2 and mean zero,

var () E(0)2 is uniformly bounded for all k by a positive constant B.

Thus,

p[ IS+ + 2
n n I> ]--2B ank / 0 as n / by hypothesis.

k=l

That is, S+ +
n n / 0 in probability as n / .

The same argument gives S
n n / 0 in probability as n / . Hence, com-

bining the two results yields Sn--(S+-n n+) (Sn- n / 0 in-probability as

n / . This implies that y 0 since the limit in probability is unique.

That is S / 0 a.s. ///
n

To obtain convergence of weighted sums of random variables which are not

identically distributed, dominance of the random variable by an integrable

random variable or in some other sense is not an unusual condition {see Chow

(1966), Stout (1968), or Rohatgi (1971)). However, it is a troublesome res-

trictlon. The strength provided by the results of this section is in the

relaxation of conditions on the weights {ank}. An examination of the weights

which are of Type (P) is provided in the next section.

3. CONDITIONS ON THE WEIGHTS.

In this section the conditions on the weights will be examined. In par-

ticular, the Type (P) sequences will be shown to be different from the weights

used in previous results. A strong law of large numbers can be obtained from
n

these results, but the sequence { 7. ank: n >_ I} need not be bounded in gen-
k=l

eral.

The first example will consist of weights {ank} which satisfy Conditions
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n 2
(1)-(4) and Y. ank / 0 as n / but which do not satisfy the conditions of

k=l
Theorem 4 of Stout (1968) or Theorem I of Chow (1966). Define

i

[Zn(n+l)] 2
k,n 1 2k-(l+)ank

where >0. Then (I) (4) hold and for all n

n
2 -I n

iY. [#.n(n+l) ] Z
k=l ank k=l k

2+2(

However, A 7. ankn k=l

-< [Zn(n+l)] X ’2’2: / 0 as n /

k=l k

i

k__E
i i X whereZn(n+l)

i k
2+2e Za(n+l)

X k2+2: > 0. Thus, X exp(-X/A_),, X exp[-Zn(n+l)]
n=l k=l n=l

X n+ln=l
=, which does not satisfy the hypothesis of Stout’s (1968) Theorem

4 or Chow’s (1966) Theorem i.

For the next example, define

-I
n if k 1,2,..., n

ank
k-3/4" if k n+l, n+2,

This sequence satisfies Conditions (1)-(4), and hence a strong law of large

numbers is available from the results of Section 2. However, since the second

moments of the random variables in Theorem 2 can be uniformly bounded,

-IKolmogorov’s criterion is easily satisfied for the weights ank n i-< k< n,

and convergence of S follows immediately. Thus, these results are most use-
n n

ful when considering nonuniform weighting where { I ank n> i} may be
k=l

unbounded. For example, define
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ank

n if k 1,2,...,n

7.
3/2 if k n+l

j=n+l J
0 if k > n+l.

This sequence is also of Type (P).

Conditions (i) and (2) imply that

Z a,.,. < F.
k--i

Thus, Kronecker type arguments would suffice for weights {ank} where the de-

crease down the diagonal of the summability matrix offsets the possible

decrease along the rows, for example, if

a > However lettingn,k+l akk ank ak+l,k+l"

ank

n-1/2 /n(k+7) if k-- i,..., n-i

-i
n if k=n

Z j-2)1/2
J--n+l

if k n+l

0 if k > n+l

defines weights which are of Type (P) but which have the property that for

each k there exists an n such that an,k+l akk < ank ak+l, k+l" Moreover,

-k
n if k l,...,n-I

-i
n if k=n

j-2)1/2
j=n+l

if k n+l

0 if k> n+l

defines extremely nonuniform weights which are of Type (P) but such that for

every n >2, an,k+I akk < ank ak+l,k+I for each k i,..., n-2.
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An exhaustive discussion of the weights which are of Type (P) will not

be presented, but it is important to note that this more general condition

on the weights is balanced by the assumption of total generalized Gaussian

nonidentically distributed random variables.

4. EXTENSION TO RANDOM ELEMENTS IN A BANACH SPACE.

In this section an extension of Theorem 2 for random elements in a

Banach space will be obtained. The study of random elements in abstract

spaces was inspired by the consideration of stochastic processes as random

elements in appropriate spaces of functions [see, for example Mann (1951) and

Billingsley (1968)], and various properties of random variables have been

extended to random elements. In particular, laws of large numbers for random

elements in abstract spaces have been studied extensively [see Padgett and

Taylor (1973), for example, and Alf (1975a) for a more recent result]. Also,

Alf (1975b) has extended the results of Jamison, Orey, and Pruitt (1965) to

weighted sums of random elements in a Banach space.

Let X denote a (real) separable Bam_h space with norm II II, and let

(, F, P) be a probability space. A random element V in X is a measurable

function (with respect to the smallest sigma-field generated by the open sub-

sets of X) from into X. The random elements {V } in X are said to be iden-

tically distributed if their induced probabilities on X are the same.

Further, {V } are said to be independent if for every finite collection
n

{BI, Bk} of Borel subsets of X
k

P[VI BI, ..., VkBk] P[ViBi].
i=l

An expected value for a random element V in X will be defined by the Pettis

integral. That is, V has expected value EVX if f(EV) Elf(V)] for every
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continuous linear functional f on X.

A Schauder basis for a Banach space X is a sequence {bi} c X such that

for each xeX there exists a unique sequence of scalars {ti} satisfying

x lira Y. t
i
bi. A sequence of linear operators {U } can be defined on X

n-o i=l
n

by
n

Un(X) l fi(x)bi, n-- 1,2,
i=l

for xe where fi(x) t. is the ith coordinate functional for the basis. For

a Banach space X, the coordinate functionals are continuous linear functionals

on X. Further, a sequence of linear operators {} may be defined on X by

(x) x Un(X), xX, n 1,2, It is well-known that for a Banach

space there exists a basis constant m. > 0 such that IUnl l<m for all n, and

hence II < m + i for all n, Marti (1969) and Wilansky (1964).

Theorem 3 extends Theorem 2 to Banach spaces which have Schauder bases.

A definition is needed first.

DEFINITION 2. Let V be a random element in a Banach space X which has

a Schauder basis with coordinate functionals {f.}. Then V is coordinatewise

totally generalized Gaussian if fi(V) is a totally generalized Gaussian ran-

dom variable for each i 1,2,

THEOREM 3. Let X be a Banach space with a Schauder basis {bi} and let

{Vk} be independent random elements in X such that EV
k

0. Let {ank} be

a Type (P) sequence. Suppose that for each k 1,2,..., V
k

is a coordinate-

wise totally generalized Gaussian random element (with respect to the basis

{bi}) that for sufficiently large positive integers p the random variables

{llQp(Vk) II-gllqp(Vk)ll}k=l are generalized Gaussian wlth parameters k<21/2,
and that as p-o there exist constants Cp, Cp/ 0, such that
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sup Zn 2
k=, nkEIIQp(Vk) ll -<C. fk=. an"-*n/’ :hnn/

Is=ll II ank Vkll/ 0 almost surely.
kl

PROOF. For each n and p, write

n n n
S 7, V

k
Z Up(Vk) + I Qp(Vk)n

k--i
ank

k--1
ank

k=l
ank (4.1)

Let p be a fixed positive integer and consider

n p n

lUp (k=Zl ank Vk) ll II
i=1 fi(kZl= ank Vk)bi l"
p n

_< Z Z ank fi (Vk) l" Ibi I,
i=l k=l

(4.2)

where (fi} are the coordinate functionals for the basis. Now since

lfil 0, i-- i,..., p, for each i-- 1,2,..., P’ (fi(Vk)}mkll is a sequence

of independent random variables with E[fi(Vk) fi(Evk) 0 for all k. Thus,

by Theorem 2, since fi(Vk) is totally generalized Gaussian for each k and i=
n

1,2,..., p, Z ank fi (Vk) + 0 almost surely as n / for each i. Thus,
kl

from (4.2) for each p there exists an event with P(p) 0 such that
P

m implies that for > 0 there is an integer NI so that for n>NIP n

Iup(kZ__l ank Vk()) < . (4.3)

n
Now, consider lQp( k=IZ ank Vk) II" For each p, {Qp(Vk) }k=I is a

sequence of independent random elements since Qp is a continuous linear

operator Thus, {(llQp(Vk) ll-EIIQp(Vk)ll)}k-i are independent random

variables with zero means for each p. Thus, by Theorem 2, since

E Iqp(Vk) is (totally) generalized Gaussian for each k (and sufficiently

large p), as n /

n
l ank[l IQp(Vk) EIIQp(Vk) I] / 0 (4.4)
k=l
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almost surely.

Now,

n n

lQp(kE=l ank Vk) ll II 7. ank Qp
k=l

n
< l ank[IIQp(Vk) II E lIQp
k=l
n

+ Y. ank EIIQp(Vk) II.
k=l

(4.5)

But, by hypothesis sup Z
n

n k=l ank Ell Qp (Vk) II<Cp" For > 0 and a large

(fixed) Po’ there exists an integer N
2

such that for n N2,
n
Z

k El IQpo(Vk) < " Also for sufficiently large Pl > Po and I a
Oan_

k=l
where P() 0, there exlsts an integer N

3
such that n N

3 implies from (4.4)

that

Y. ank[l IQp(Vk()) E IQp(Vk) I] < -.
k=l

(4.6)

Therefore, from (4.i), (4.3), (4.5) and (4.6) for 0 u , where

g0--pl f for p Pl’ and for n _> max {N1, N2, N3},P

[[Sn()[] < []Up(kE__l ank Vk())[l + [[QP(k=ZI ank Vk())[[ < " III

Theorem 3 gives convergence results for random elements which need not

be identically distributed and which do not have restrictive moment conditions

(see the results of Padgett and Taylor (1976), for example). Also, the con-

ditlons on the weights {ank} are very general as indicated in Section 3.

Moreover, the uniform dominance in probability of Rohatgl (1971) and Padgett

and Taylor (1974) is eliminated by the modified generalized Gausslan type of

condition. Finally, if X R
n
with the usual norm, then Theorem 3 gives a

convergence theorem for n-dimenslonal random vectors, and since f l(x) 0
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for 1>n, xCRn, Qp(X) 0 for p>n, and only Inequality (4.3) is needed.

These results may be applied to stochastic processes. For example,

Theorem 3 may be applied to sequences of separable Wiener processes on [0,i]

(or [0,T]) since such processes may be considered as random elements in the

Banach space C[0,1] [Billlngsley (1968)] which has a Schauder basis.
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